0

Давление в подводной лодке на глубине

Мы живем на планете воды, но земные океаны знаем хуже, чем некоторые космические тела. Больше половины поверхности Марса артографировано с разрешением около 20 м — и только 10−15% океанского дна изучены при разрешении хотя бы 100 м. На Луне побывало 12 человек, на дне Марианской впадины — трое, и все они не смели и носа высунуть из сверхпрочных батискафов.

Погружаемся

Главная сложность в освоении Мирового океана — это давление: на каждые 10 м глубины оно увеличивается еще на одну атмосферу. Когда счет доходит до тысяч метров и сотен атмосфер, меняется все. Жидкости текут иначе, необычно ведут себя газы… Аппараты, способные выдержать эти условия, остаются штучным продуктом, и даже самые современные субмарины на такое давление не рассчитаны. Предельная глубина погружения новейших АПЛ проекта 955 «Борей» составляет всего 480 м.

Водолазов, спускающихся на сотни метров, уважительно зовут акванавтами, сравнивая их с покорителями космоса. Но бездна морей по‑своему опаснее космического вакуума. Случись что, работающий на МКС экипаж сможет перейти в пристыкованный корабль и через несколько часов окажется на поверхности Земли. Водолазам этот путь закрыт: чтобы эвакуироваться с глубины, могут потребоваться недели. И срок этот не сократить ни при каких обстоятельствах.

Впрочем, на глубину существует и альтернативный путь. Вместо того чтобы создавать все более прочные корпуса, можно отправить туда… живых водолазов. Рекорд давления, перенесенного испытателями в лаборатории, почти вдвое превышает способности подлодок. Тут нет ничего невероятного: клетки всех живых организмов заполнены той же водой, которая свободно передает давление во всех направлениях.

Клетки не противостоят водному столбу, как твердые корпуса субмарин, они компенсируют внешнее давление внутренним. Недаром обитатели «черных курильщиков», включая круглых червей и креветок, прекрасно себя чувствуют на многокилометровой глубине океанского дна. Некоторые виды бактерий неплохо переносят даже тысячи атмосфер. Человек здесь не исключение — с той лишь разницей, что ему нужен воздух.

Под поверхностью

Кислород Дыхательные трубки из тростника были известны еще могиканам Фенимора Купера. Сегодня на смену полым стеблям растений пришли трубки из пластика, «анатомической формы» и с удобными загубниками. Однако эффективности им это не прибавило: мешают законы физики и биологии.

Уже на метровой глубине давление на грудную клетку поднимается до 1,1 атм — к самому воздуху прибавляется 0,1 атм водного столба. Дыхание здесь требует заметного усилия межреберных мышц, и справиться с этим могут только тренированные атлеты. При этом даже их сил хватит ненадолго и максимум на 4−5 м глубины, а новичкам тяжело дается дыхание и на полуметре. Вдобавок чем длиннее трубка, тем больше воздуха содержится в ней самой. «Рабочий» дыхательный объем легких составляет в среднем 500 мл, и после каждого выдоха часть отработанного воздуха остается в трубке. Каждый вдох приносит все меньше кислорода и все больше углекислого газа.

Чтобы доставлять свежий воздух, требуется принудительная вентиляция. Нагнетая газ под повышенным давлением, можно облегчить работу мускулам грудной клетки. Такой подход применяется уже не одно столетие. Ручные насосы известны водолазам с XVII века, а в середине XIX века английские строители, возводившие подводные фундаменты для опор мостов, уже подолгу трудились в атмосфере сжатого воздуха. Для работ использовались толстостенные, открытые снизу подводные камеры, в которых поддерживали высокое давление. То есть кессоны.

Глубже 10 м

Азот Во время работы в самих кессонах никаких проблем не возникало. Но вот при возвращении на поверхность у строителей часто развивались симптомы, которые французские физиологи Поль и Ваттель описали в 1854 году как On ne paie qu’en sortant — «расплата на выходе». Это мог быть сильный зуд кожи или головокружение, боли в суставах и мышцах. В самых тяжелых случаях развивались параличи, наступала потеря сознания, а затем и гибель.

Доспех против давления Чтобы отправиться на глубину без каких-либо сложностей, связанных с экстремальным давлением, можно использовать сверхпрочные скафандры. Это чрезвычайно сложные системы, выдерживающие погружение на сотни метров и сохраняющие внутри комфортное давление в 1 атм. Правда, они весьма дороги: например, цена недавно представленного скафандра канадской фирмы Nuytco Research Ltd. EXOSUIT составляет около миллиона долларов.

Проблема в том, что количество растворенного в жидкости газа прямо зависит от давления над ней. Это касается и воздуха, который содержит около 21% кислорода и 78% азота (прочими газами — углекислым, неоном, гелием, метаном, водородом — можно пренебречь: их содержание не превышает 1%). Если кислород быстро усваивается, то азот просто насыщает кровь и другие ткани: при повышении давления на 1 атм в организме растворяется дополнительно около 1 л азота.

При быстром снижении давления избыток газа начинает выделяться бурно, иногда вспениваясь, как вскрытая бутылка шампанского. Появляющиеся пузырьки могут физически деформировать ткани, закупоривать сосуды и лишать их снабжения кровью, приводя к самым разнообразным и часто тяжелым симптомам. По счастью, физиологи разобрались с этим механизмом довольно быстро, и уже в 1890-х годах декомпрессионную болезнь удавалось предотвратить, применяя постепенное и осторожное снижение давления до нормы — так, чтобы азот выходил из организма постепенно, а кровь и другие жидкости не «закипали».

В начале ХХ века английский исследователь Джон Холдейн составил детальные таблицы с рекомендациями по оптимальным режимам спуска и подъема, компрессии и декомпрессии. Экспериментируя с животными, а затем и с людьми — в том числе с самим собой и своими близкими, — Холдейн выяснил, что максимальная безопасная глубина, не требующая декомпрессии, составляет около 10 м, а при длительном погружении — и того меньше. Возвращение с глубины должно производиться поэтапно и не спеша, чтобы дать азоту время высвободиться, зато спускаться лучше довольно быстро, сокращая время поступления избыточного газа в ткани организма. Людям открылись новые пределы глубины.

Глубже 40 м

Гелий Борьба с глубиной напоминает гонку вооружений. Найдя способ преодолеть очередное препятствие, люди делали еще несколько шагов — и встречали новую преграду. Так, следом за кессонной болезнью открылась напасть, которую дайверы почти любовно зовут «азотной белочкой». Дело в том, что в гипербарических условиях этот инертный газ начинает действовать не хуже крепкого алкоголя. В 1940-х опьяняющий эффект азота изучал другой Джон Холдейн, сын «того самого». Опасные эксперименты отца его ничуть не смущали, и он продолжил суровые опыты на себе и коллегах. «У одного из наших испытуемых произошел разрыв легкого, — фиксировал ученый в журнале, — но сейчас он поправляется».

Несмотря на все исследования, механизм азотного опьянения детально не установлен — впрочем, то же можно сказать и о действии обычного алкоголя. И тот и другой нарушают нормальную передачу сигналов в синапсах нервных клеток, а возможно, даже меняют проницаемость клеточных мембран, превращая ионообменные процессы на поверхностях нейронов в полный хаос. Внешне то и другое проявляется тоже схожим образом. Водолаз, «словивший азотную белочку», теряет контроль над собой. Он может впасть в панику и перерезать шланги или, наоборот, увлечься пересказом анекдотов стае веселых акул.

Наркотическим действием обладают и другие инертные газы, причем чем тяжелее их молекулы, тем меньшее давление требуется для того, чтобы этот эффект проявился. Например, ксенон анестезирует и при обычных условиях, а более легкий аргон — только при нескольких атмосферах. Впрочем, эти проявления глубоко индивидуальны, и некоторые люди, погружаясь, ощущают азотное опьянение намного раньше других.

Избавиться от анестезирующего действия азота можно, снизив его поступление в организм. Так работают дыхательные смеси нитроксы, содержащие увеличенную (иногда до 36%) долю кислорода и, соответственно, пониженное количество азота. Еще заманчивее было бы перейти на чистый кислород. Ведь это позволило бы вчетверо уменьшить объем дыхательных баллонов или вчетверо увеличить время работы с ними. Однако кислород — элемент активный, и при длительном вдыхании — токсичный, особенно под давлением.

Чистый кислород вызывает опьянение и эйфорию, ведет к повреждению мембран в клетках дыхательных путей. При этом нехватка свободного (восстановленного) гемоглобина затрудняет выведение углекислого газа, приводит к гиперкапнии и метаболическому ацидозу, запуская физиологические реакции гипоксии. Человек задыхается, несмотря на то что кислорода его организму вполне достаточно. Как установил тот же Холдейн-младший, уже при давлении в 7 атм дышать чистым кислородом можно не дольше нескольких минут, после чего начинаются нарушения дыхания, конвульсии — все то, что на дайверском сленге называется коротким словом «блэкаут».

Жидкостное дыхание

Пока еще полуфантастический подход к покорению глубины состоит в использовании веществ, способных взять на себя доставку газов вместо воздуха — например, заменителя плазмы крови перфторана. В теории, легкие можно заполнить этой голубоватой жидкостью и, насыщая кислородом, прокачивать ее насосами, обеспечивая дыхание вообще без газовой смеси. Впрочем, этот метод остается глубоко экспериментальным, многие специалисты считают его и вовсе тупиковым, а, например, в США применение перфторана официально запрещено.

Читайте также:  Влаго и пылезащитные смартфоны

Поэтому парциальное давление кислорода при дыхании на глубине поддерживается даже ниже обычного, а азот заменяют на безопасный и не вызывающий эйфории газ. Лучше других подошел бы легкий водород, если б не его взрывоопасность в смеси с кислородом. В итоге водород используется редко, а обычным заменителем азота в смеси стал второй по легкости газ, гелий. На его основе производят кислородно-гелиевые или кислородно-гелиево-азотные дыхательные смеси — гелиоксы и тримиксы.

Глубже 80 м

Сложные смеси Здесь стоит сказать, что компрессия и декомпрессия при давлениях в десятки и сотни атмосфер затягивается надолго. Настолько, что делает работу промышленных водолазов — например, при обслуживании морских нефтедобывающих платформ — малоэффективной. Время, проведенное на глубине, становится куда короче, чем долгие спуски и подъемы. Уже полчаса на 60 м выливаются в более чем часовую декомпрессию. После получаса на 160 м для возвращения понадобится больше 25 часов — а ведь водолазам приходится спускаться и ниже.

Поэтому уже несколько десятилетий для этих целей используют глубоководные барокамеры. Люди живут в них порой целыми неделями, работая посменно и совершая экскурсии наружу через шлюзовой отсек: давление дыхательной смеси в «жилище» поддерживается равным давлению водной среды вокруг. И хотя декомпрессия при подъеме со 100 м занимает около четырех суток, а с 300 м — больше недели, приличный срок работы на глубине делает эти потери времени вполне оправданными.

Методы длительного пребывания в среде с повышенным давлением прорабатывались с середины ХХ века. Большие гипербарические комплексы позволили создавать нужное давление в лабораторных условиях, и отважные испытатели того времени устанавливали один рекорд за другим, постепенно переходя и в море. В 1962 году Роберт Стенюи провел 26 часов на глубине 61 м, став первым акванавтом, а тремя годами позже шестеро французов, дыша тримиксом, прожили на глубине 100 м почти три недели.

Здесь начались новые проблемы, связанные с длительным пребыванием людей в изоляции и в изнурительно некомфортной обстановке. Из-за высокой теплопроводности гелия водолазы теряют тепло с каждым выдохом газовой смеси, и в их «доме» приходится поддерживать стабильно жаркую атмосферу — около 30 °C, а вода создает высокую влажность. Кроме того, низкая плотность гелия меняет тембр голоса, серьезно затрудняя общение. Но даже все эти трудности вместе взятые не поставили бы предел нашим приключениям в гипербарическом мире. Есть ограничения и поважнее.

Глубже 600 м

Предел В лабораторных экспериментах отдельные нейроны, растущие «в пробирке», плохо переносят экстремально высокое давление, демонстрируя беспорядочную гипервозбудимость. Похоже, что при этом заметно меняются свойства липидов клеточных мембран, так что противостоять этим эффектам невозможно. Результат можно наблюдать и в нервной системе человека под огромным давлением. Он начинает то и дело «отключаться», впадая в кратковременные периоды сна или ступора. Восприятие затрудняется, тело охватывает тремор, начинается паника: развивается нервный синдром высокого давления (НСВД), обусловленный самой физиологией нейронов.

Зачем дышать с закрытым носом Помимо легких, в организме есть и другие полости, содержащие воздух. Но они сообщаются с окружающей средой очень тонкими каналами, и давление в них выравнивается далеко не моментально. Например, полости среднего уха соединяются с носоглоткой лишь узкой евстахиевой трубой, которая к тому же часто забивается слизью. Связанные с этим неудобства знакомы многим пассажирам самолетов, которым приходится, плотно закрыв нос и рот, резко выдохнуть, уравнивая давление уха и внешней среды. Водолазы тоже применяют такое «продувание», а при насморке стараются вовсе не погружаться.

Добавление к кислородно-гелиевой смеси небольших (до 9%) количеств азота позволяет несколько ослабить эти эффекты. Поэтому рекордные погружения на гелиоксе достигают планки 200−250 м, а на азотсодержащем тримиксе — около 450 м в открытом море и 600 м в компрессионной камере. Законодателями в этой области стали — и до сих пор остаются — французские акванавты. Чередование воздуха, сложных дыхательных смесей, хитрых режимов погружения и декомпрессии еще в 1970-х позволило водолазам преодолеть планку в 700 м глубины, а созданную учениками Жака Кусто компанию COMEX сделало мировым лидером в водолазном обслуживании морских нефтедобывающих платформ. Детали этих операций остаются военной и коммерческой тайной, поэтому исследователи других стран пытаются догнать французов, двигаясь своими путями.

Пытаясь опуститься глубже, советские физиологи изучали возможность замены гелия более тяжелыми газами, например неоном. Эксперименты по имитации погружения на 400 м в кислородно-неоновой атмосфере проводились в гипербарическом комплексе московского Института медико-биологических проблем (ИМБП) РАН и в секретном «подводном» НИИ-40 Министерства обороны, а также в НИИ Океанологии им. Ширшова. Однако тяжесть неона продемонстрировала свою обратную сторону.

Можно подсчитать, что уже при давлении 35 атм плотность кислородно-неоновой смеси равна плотности кислородно-гелиевой примерно при 150 атм. А дальше — больше: наши воздухоносные пути просто не приспособлены для «прокачивания» такой густой среды. Испытатели ИМБП сообщали, что, когда легкие и бронхи работают со столь плотной смесью, возникает странное и тяжелое ощущение, «будто ты не дышишь, а пьешь воздух». В бодрствующем состоянии опытные водолазы еще способны с этим справиться, но в периоды сна — а на такую глубину не добраться, не потратив долгие дни на спуск и подъем — они то и дело просыпаются от панического ощущения удушья. И хотя военным акванавтам из НИИ-40 удалось достичь 450-метровой планки и получить заслуженные медали Героев Советского Союза, принципиально это вопроса не решило.

Новые рекорды погружения еще могут быть поставлены, но мы, видимо, подобрались к последней границе. Невыносимая плотность дыхательной смеси, с одной стороны, и нервный синдром высоких давлений — с другой, видимо, ставят окончательный предел путешествиям человека под экстремальным давлением.

За помощь в подготовке статьи автор благодарит заведующего Отделом барофизиологии, баротерапии и водолазной медицины ИМБП РАН Владимира Комаревцева

  • Рубрика:
  • Обучение |
  • Основы теории подводной лодки

В подводном положении остойчивость подводной лодки обеспечивается только остойчивостью веса, так как отсутствует действующая площадь ватерлинии, продольная метацентрическая высота уменьшается приблизительно в 100 раз и становится равной поперечной метацентрической высоте, запас плавучести погашен приемом воды в цистерны главного балласта и борьба за непотопляемость принимает совершенно другой характер.

Что же будет происходить с подводной лодкой при поступлении воды внутрь прочного корпуса и какой арсенал мер может противопоставить командир и экипаж для предотвращения ее гибели?

Сущность борьбы за подводную непотопляемость заключается:

— в обеспечении быстрейшего всплытия на поверхность, а если всплытие исключается тактической обстановкой, в удержании подводной лодки в заданном диапазоне глубин, не превышающем предельную глубину погружения, с последующим всплытием на глубину гарантированной прочности переборок аварийного отсека;

— в предотвращении разрушения переборок затапливающегося отсека и распространения воды в смежные отсеки с принятием мер к уменьшению и полному прекращению поступления воды.

Резкое увеличение глубины погружения и нарастание дифферента могут быть вызваны поступлением воды в отсек, заклиниванием кормовых горизонтальных рулей и причинами случайного характера. При поступлении воды в отсек или при заклинивании кормовых горизонтальных рулей на погружение скорость погружения подводной лодки под действием топящих сил может достигать К случайным причинам, по которым подводная лодка может погрузиться на глубину, превышающую рабочую можно отнести неумелое, управление горизонтальными рулями на больших скоростях хода, непроизвольное заполнение цистерн вспомогательного балласта, ракетных шахт и контейнеров, торпедных аппаратов. Поэтому основная задача состоит в том, чтобы при помощи имеющихся средств одержать подводную лодку от провала на глубину, большую предельной, а затем вывести её на поверхность или на безопасную глубину в балансировочном режиме движения. В этом заключается смысл подводной непотопляемости.

Подводной непотопляемостью называется способность подводной лодки при поступлении воды в отсеки прочного корпуса всплывать в остойчивое надводное положение или при сохранении хода продолжать плавание в пределах глубин, безопасных по прочности переборок аварийного отсека. Обеспечение подводной непотопляемости представляет собой определенную сложность, так как:

— в подводном положении отсутствует запас плавучести, что приводит при поступлении воды в любой из отсеков к возникновению отрицательной остаточной плавучести и нарастанию дифферента;

— с увеличением глубины погружения увеличиваются гидродинамический напор, а, следовательно, и скорость поступления воды в отсек через пробоину;

— с увеличением глубины погружения уменьшается производительность водоотливных средств и увеличивается расход воздуха высокого давления (ВВД) для продувания цистерн главного балласта и создания противодавления в отсеках.

Целью конструктивного обеспечения непотопляемости является придание подводной лодке при её проектировании и постройке свойств и технических средств, обеспечивающих заданный уровень непотопляемости. При этом учитываются следующие факторы:

—давление, на которое рассчитаны прочный корпус и водонепроницаемые переборки;

Читайте также:  Европа 4 вылетает игра

— величина запаса ВВД, являющегося средством продувания цистерн главного балласта и создания противодавления в аварийном и смежном отсеках;

— быстродействие систем, предназначенных для ликвидации последствий аварии (главным образом системы аварийного продувания цистерн главного балласта и осушительной системы);

— несущая способность корпуса подводной лодки;

— автоматизация процесса борьбы за непотопляемость.

Рассмотрим кратко эти факторы.

Прочный корпус должен обеспечить неограниченное число погружений на рабочую глубину. Водонепроницаемые переборки по своей конструкции бывают плоскими и сферическими. В настоящее время применяются два варианта расстановки переборок — смешанный и однородный, причем последний вариант, когда все переборки плоские, принят на всех новых проектах подводных лодок.

При смешанном варианте сферическими переборками ограничиваются Переборка ставится выпуклой частью и рассчитана на давление 10 4 гПа (10 кгс/см 2 ) со стороны вогнутости, то есть с внешней стороны когда материал переборки работает на растяжение. Выпуклая сторона переборки рассчитана па давление 2×10 3 гПа (2 кгс/см 2 ). Плоские переборки при однородном варианте расстановки рассчитаны на давление 10 4 гПа с обеих сторон. Прочность таких переборок должна обеспечить их целостность, если подводная лодка, имея ход равный ¾ от максимального на глубине 500 м получит пробоину не более 0,01 м 2 , своевременно произведет всплытие на глубину 100 м до достижения давления в аварийном отсеке 10 4 гПа (10 кгс/см 2 ).

Величина запаса ВВД на подводной лодке предусматривает:

одно аварийное продувание с рабочей глубины,

всплытие подводной лодки с грунта с затопленным отсеком с глубины, равной половине предельной,

трёхкратное продувание всех цистерн главного балласта при всплытии с перископной глубины в крейсерское положение,

время продувания всех цистерн главного балласта при всплытии с перископной глубины в крейсерское положение — не более 90 секунд,

время продувания средней группы цистерн главного балласта с пери­скопной глубины в позиционное положение — не более 30 секунд.

Система аварийного продувания транспортирует воздух высокого давления для продувания цистерн главного балласта. Однако транспортирующие способности этой системы недостаточны для эффективной, малой по времени подачи воздуха в цистерны. Причинами этого являются: недостаточное проходное сечение трубопроводов, большое количество местных сопротивлений в трубопроводах и арматуре. Это приводит к тому, что продувание цистерн главного балласта и создание противодавления в аварийном отсеке происходит с запозданием по сравнению со временем его затопления. Основной причиной этого является недостаточное секундное поступление ВВД в цистерны главного балласта при продувании их на больших глубинах. В связи с этим разработаны и внедрены системы аварийного продувания цистерн главного балласта с помощью пороховых газов.

Осушительная система предназначена для удаления за борт воды, попавшей внутрь прочного корпуса. Она состоит из трубопроводов, арматуры и водоотливных средств. Суммарная производительность водоотливных средств подводной лодки зависит от их количества, глубины погружения и условий работы насосов.

Несущая способность корпуса подводной лодки при большой скорости хода является основным средством борьбы за подводную непотопляемость практически вне зависимости от глубины погружения. При пробоине в кормовых отсеках, как правило, выходят из строя энергетическая установка и линии валов, подводная лодка теряет ход и тем самым утрачивает несущую способность корпуса. Таким образом, несущая способность корпуса подводной лодки в большей степени активно используется при поступлении воды в носовые отсеки.

Автоматизация процессов борьбы за непотопляемость су­щественно уменьшает время запаздывания в принятии реше­ния по борьбе за живучесть и исключает его субъективность. При отсутствии автоматизации средства борьбы за непото­пляемость могут быть применены не ранее, чем через 25-30с после начала поступления воды в отсек подводной лодки, а при наличии средств автоматизации — через 3,5с. Изменение кинематических параметров подводной лодки при аварии происходит очень быстро.

Из выше изложенного следует, что на подводную непотопляемость оказывают влияние следующие факторы:

глубина, на которой начала поступать вода в отсек, и размеры пробоины,

начальная скорость хода и резерв мощности энергетической установки для развития максимальной скорости хода,

— объём и расположение затапливаемого отсека,

— интенсивность продувания ЦГБ,

— наличие противоаварийной автоматики,

— допустимые дифференты на участке всплытия.

Для оценки влияния этих факторов на непотопляемость строят диаграммы зон безопасности для определенного проекта подводной лодки.

На диаграмме (рис. 9) изображены кривые предельных значений глубины погружения и скорости хода в момент поступления воды в отсек при различных размерах пробоин для атомной подводной лодки проекта, где:

ήо — глубина погружения подводной лодки перед аварией;

ήпред — предельная глубина погружения;

vо — скорость подводной лодки перед аварией;

vпр – максимальная скорость хода подводной лодки.

Рис. 9. Зоны безопасности подводной лодки в зависимости от площади пробоины

На диаграмме вероятность негибели аварийной подводной лодки будет выражаться относительной площадью зоны безопасности. Под зоной безопасности понимается область предельно допустимых значении глубины погружения и скорости хода подводной лодки в момент аварии, при которых возможно ее спасение. Зона безопасности будет расположена под соответствующей кривой площади пробоины. Чем больше площадь этой зоны, тем больше вероятность негибели подводной лодки при проведении соответствующих противоаварийных мероприятий. Из диаграммы следует, что при больших площадях пробоин спасение подводной лодки возможно только в случае нахождения её в момент поступления воды на малых глубинах погружения и большой скорости хода.

Так, например, вероятность негибели атомной подводной лодки будет равной 0,5 при нахождении её на глубине ήо=200 м на скорости хода перед аварией vо = 15 узлов при поступлении воды через пробоину площадью 0,01 м 2 , так как ήо/ ήпред = 200/400=0.5, vо /vпр = 15узл/30 узл = 0.5.

Точка пересечения этих значений находится под кривой площади пробоины равной 0,01 м 2 , то есть в зоне безопасности. Таким образом, во всех случаях поступления воды в отсеки прочного корпуса необходимо иметь большую скорость хода. При наличии резерва мощности энергетической установки и возможности быстрого развития максимального хода повышается несущая способность корпуса подводной лодки.

При аварии, связанной с заклинкой горизонтальных ру­лей, наблюдается обратный эффект — увеличение скорости хода ухудшает возможности одержания подводной лодки от провала по глубине. Это объясняется тем, что угол дифферент подводной лодки при постоянном угле перекладки горизонтальных рулей возрастет пропорционально квадрату её скорости. Диаграмма зон безопасности для случая заклинки больших горизонтальных рулей атомной подводной лодки показана на рис. 10.

Анализ диаграммы показывает, что зона безопасности тем больше, чем меньше угол заклинки горизонтальных рулей, а вероятность негибели подводной лодки возрастает с уменьшением скорости хода.

Большое влияние на подводную непотопляемость оказывает время запаздывания в проведении противоаварийных мероприятий. Зона безопасности резко уменьшается при увеличении времени на принятие решения, отдачу команд и их исполнение по одержанию подводной лодки от провала на большую глубину.

Рис.10. Зоны безопасности подводной лодки при заклинивании КГР

При поступлении воды внутрь прочного корпуса запаздывание более 120 с является гибельным для подводной лодки. Из диаграммы (рис. 10) видно, что облегчить ее состояние может только большая скорость и малая глубина погружения в начале аварии. Уменьшение глубины погружения во всех случаях аварии увеличивает вероятность негибели подводной лодки, что достигается созданием максимально допустимого дифферента при всплытии. Эффективное одержание подводной лодки от провала без хода при нахождении ее на больших глубинах погружения требует большого расхода ВВД в единицу времени, что не всегда обеспечивается транспортирующей способностью системы аварийного продувания. В первую очередь должны продуваться только те цистерны главного балласта, которые компенсируют дифферентующий момент и отрицательную плавучесть, возникшие от поступления воды в отсек.

Борьба за подводную непотопляемость может быть успешной только в том случае, если все средства, предназначенные для борьбы за неё, будут своевременно и рационально использованы.

Факт существования батискафа, сумевшего покорить глубочайшую бездну, свидетельствует о технической возможности создания обитаемых аппаратов для погружений на любые глубины.

Почему же ни одна из современных подлодок и близко не способна погрузиться — даже на 1000 метров?

Полвека назад собранный из подручных средств стандартной стали и плексигласа батискаф достиг дна Марианской впадины. И мог бы продолжить свое погружение, если бы в природе встречались большие глубины. Безопасная расчетная глубина для «Триеста» составляла 13 километров!

Свыше 3/4 площади Мирового океана приходится на абиссальную зону: океанское ложе с глубинами свыше 3000 м. Подлинный оперативный простор для подводного флота! Почему никто не использует эти возможности?

Покорение больших глубин никак не связано с прочностью корпуса «Акул», «Бореев» и «Вирджиний». Проблема заключается в другом. И пример с батискафом «Триест» здесь совершенно ни при чем.

Они похожи, как самолет и дирижабль

Батискаф — это «поплавок». Цистерна с бензином, с закрепленной под ней гондолой экипажа. При принятии на борт балласта конструкция обретает отрицательную плавучесть и погружается в глубину. При сбрасывании балласта — возвращается на поверхность.

В отличие от батискафов, подводным лодкам требуется в течение одного погружения многократно изменять глубину нахождения под водой. Иначе говоря, подводный корабль обладает способностью многократно изменять запас плавучести. Это достигается путём заполнения забортной водой балластных цистерн, которые при всплытии продуваются воздухом.

Читайте также:  Год чего сейчас в россии

Обычно на лодках применяются три воздушные системы: воздух высокого давления (ВВД), среднего (ВСД) и низкого давления (ВНД). К примеру, на современных американских атомоходах запасы сжатого воздуха хранятся в баллонах под давлением 4500 фунтов на кв. дюйм. Или, по-человечески, примерно 315 кг/см2. Однако ни одна из систем-потребителей сжатого воздуха не использует ВВД напрямую. Резкие перепады давления вызывают интенсивное обмерзание и закупорку арматуры, одновременно создавая опасность компрессионных вспышек паров масла в системе. Повсеместное применение ВВД под давлением свыше 300 атм. создало бы недопустимые опасности на борту субмарины.

ВВД через систему редукционных клапанов поступает к потребителям в виде ВСД под давлением 3000 фн. на кв. дюйм (примерно 200 кг/см2). Именно таким воздухом продуваются цистерны главного балласта. Для обеспечения работы остальных механизмов лодки, запуска оружия, а также продувания дифферентных и уравнительных цистерн применяется «рабочий» воздух под еще более низким давлением около 100-150 кг/см2.

И здесь в действие вступают законы драматургии!

С погружением в морские глубины на каждые 10 метров давление возрастает на 1 атмосферу

На глубине 1500 м давление составляет 150 атм. На глубине 2000 м давление 200 атм. Это как раз соответствует максимальному значению ВСД и ВНД в системах подводных лодок.

Ситуация усугубляется ограниченными объемами сжатого воздуха на борту. Особенно после продолжительного нахождения лодки под водой. На глубине 50 метров имеющихся запасов может быть достаточно для вытеснения воды из балластных цистерн, но на глубине 500 метров этого хватит лишь для продувания 1/5 их объема. Большие глубины — всегда риск, и там требуется действовать с предельной осторожностью.

В наши дни существует практическая возможность создания подлодки с корпусом, рассчитанным на глубину погружения 5000 метров. Но для продувания цистерн на такой глубине потребовался бы воздух под давлением свыше 500 атмосфер. Сконструировать трубопроводы, клапаны и арматуру, рассчитанные под такое давление, при сохранении их разумной массы и исключения всех связанных опасностей на сегодняшний день является технически неразрешимой задачей.

Современные подлодки строятся по принципу разумного баланса характеристик. Зачем делать высокопрочный корпус, выдерживающий давление километровой толщи воды, если системы всплытия рассчитаны на гораздо меньшие глубины. Погрузившись на километр, подлодка будет обречена в любом случае.

Однако в этой истории имеются свои герои и отверженные.

Традиционными аутсайдерами в области глубоководных погружений считаются американские подводники

Корпуса американских лодок на протяжении полувека делаются из одного сплава HY-80 с весьма посредственными характеристиками. High-yield-80 = сплав повышенной прочности с пределом текучести 80 000 фунтов на кв. дюйм, что соответствует значению 550 МПа.

Многие эксперты выражают сомнения в адекватности такого решения. Из-за слабого корпуса лодки неспособны в полной мере использовать возможности систем всплытия. Которые позволяют продувание цистерн на значительно больших глубинах. По оценкам, рабочая глубина погружения (глубина, на которой лодка может находиться длительное время, совершая любые маневры) для американских субмарин не превышает 400 метров. Предельная глубина — 550 метров.

Применение HY-80 позволяет удешевить и ускорить сборку корпусных конструкций, среди преимуществ всегда назывались хорошие сварочные качества этой стали.

Для ярых скептиков, которые немедленно заявят, что флот «вероятного противника» массово пополняется небоеспособным хламом, нужно заметить следующее. Те различия в темпах кораблестроения между Россией и США обусловлены не столько применением более качественных сортов стали для наших подлодок, сколько другими обстоятельствами. Ну да ладно.

За океаном всегда полагали, что супергерои не нужны. Подводное оружие должно быть максимально надежным, тихим и многочисленным. И в этом есть доля правды.

«Комсомолец»

Неуловимый «Майк» (К-278 по классификации НАТО) установил абсолютный рекорд глубины погружения среди подводных лодок — 1027 метров.

Предельная глубина погружения «Комсомольца» по расчетам составляла 1250 м.

Среди главных отличий конструкции, несвойственных другим отечественным подлодкам, — 10 бескингстонных цистерн, размещенных внутри прочного корпуса. Возможность стрельбы торпедами с больших глубин (до 800 метров). Всплывающая спасательная капсула. И главная изюминка — аварийная система продувания цистерн с помощью газогенераторов.

Реализовать все заложенные преимущества позволил корпус, изготовленный из титанового сплава.

Сам по себе титан не являлся панацеей при покорении морских глубин. Главным при создании глубоководного «Комсомольца» были качество сборки и форма прочного корпуса с минимумом отверстий и ослабленных мест.

Титановый сплав 48-Т с пределом текучести 720 МПа лишь незначительно превосходил по прочности конструкционную сталь HY-100 (690 МПа), из которой изготавливались подлодки «СиВулф».

Другие описываемые «преимущества» титанового корпуса в виде малых магнитных свойств и его меньшей подверженности коррозии сами по себе не стоили затраченных средств. Магнитометрия никогда не являлась приоритетным способом обнаружения лодок; под водой все решает акустика. А проблема морской коррозии уже лет двести решается более простыми методами.

Титан с точки зрения отечественного подводного кораблестроения обладал ДВУМЯ реальными преимуществами:

а) меньшей плотностью, что означало более легкий корпус. Появившиеся резервы тратились на другие статьи нагрузки, например, ГЭУ большей мощности. Неслучайно подлодки с титановым корпусом (705(К) «Лира», 661 «Анчар», «Кондор» и «Барракуда») строились как покорители скорости.;

б) Среди всех высокопрочных сталей и сплавов титановый сплав 48-Т оказался наиболее технологичным в обработке и при сборке корпусных конструкций.

«Наиболее технологичный» — не значит простой. Но сварочные качества титана хотя бы позволяли производить сборку конструкций.

За океаном имели более оптимистичный взгляд на применение сталей. Для изготовления корпусов новых подлодок XXI века была предложена высокопрочная сталь марки HY-100. В 1989 году в Штатах заложили головной «СиВулф». Спустя два года оптимизма поубавилось. Корпус «СиВулфа» пришлось разобрать на иголки и начинать работу заново.

В настоящее время многие проблемы решены, и стальные сплавы, эквивалентные по свойствам HY-100, находят более широкое применение в кораблестроении. По некоторым данным, подобная сталь (WL = Werkstoff Leistungsblatt 1.3964) применяется при изготовлении прочного корпуса немецких неатомных подлодок «Тип 214».

Существуют еще более прочные сплавы для изготовления корпусов, например, стальной сплав HY-130 (900 МПа). Но из-за плохих сварочных свойств корабелы считали применение HY-130 невозможным.

Пока не поступили новости из Японии.

耐久 значит предел текучести

Как утверждает старая пословица: «Что бы вы ни умели делать хорошо, всегда найдется азиат, который делает это лучше».

В открытых источниках присутствует крайне мало информации о характеристиках японских боевых кораблей. Однако экспертов не останавливают ни языковой барьер, ни параноидальная секретность, свойственная вторым по силе ВМС в мире.

Из доступной информации следует, что самураи наряду с иероглифами широко используют английские обозначения. В описании подлодок присутствует сокращение NS (Naval Steel — военно-морская сталь), сочетаемая с цифровыми индексами 80 или 110.

В метрической системе счисления «80» при обозначении марки стали, скорее всего, означает предел текучести 800 МПа. Более прочная сталь NS110 имеет предел текучести 1100 МПа.

С точки зрения американца, стандартная для японских подлодок сталь носит обозначение HY-114. Более качественная и прочная — HY-156.

Немая сцена

«Кавасаки» и «Мицубиси Хэви Индастриз» без всяких громких обещаний и «Посейдонов» научились изготавливать корпуса из материалов, ранее считавшихся несваримыми и невозможными при постройке подлодок.

Приведенные данные соответствуют устаревшим субмаринам с воздухонезависимой установкой типа «Оясио». В составе флота 11 единиц, из которых две самые старые, вступившие в строй в 1998-1999 гг., переведены в разряд учебных.

«Оясио» имеет смешанную двухкорпусную конструкцию. Наиболее логичное предположение — центральная секция (прочный корпус) изготовлена из наиболее прочной стали NS110, в носовой и кормовой частях лодки применяется двухкорпусная конструкция: легкая обтекаемая оболочка из NS80 (давление внутри = давлению снаружи), прикрывающая цистерны главного балласта, вынесенные за пределы прочного корпуса.

Современные японские субмарины типа «Сорю» считаются улучшенными «Оясио» с сохранением основных конструктивных решений, доставшийся им от предшественников.

При наличии прочного корпуса из стали NS110 рабочая глубина «Сорю» оценивается как минимум в 600 метров. Предельная — 900.

С учетом представленных обстоятельств ВМС самообороны Японии на сегодняшний день обладают самым глубоководными флотом боевых подлодок.

Японцы "выжимают" всё возможное из доступного. Другой вопрос, насколько это поможет в морском конфликте. Для противостояния в морских глубинах необходимо наличие ядерной силовой установки. Жалкие японские "полумеры" с увеличением рабочей глубины или созданием «лодки на батарейках» (удивившая мир подлодка «Орю») похожи на хорошую мину при плохой игре.

С другой стороны, традиционное внимание к мелочам всегда позволяло японцам иметь преимущество над противником. Появление ядерной силовой установки для ВМС Японии — вопрос времени. Но у кого в мире еще имеются технологии изготовления сверхпрочных корпусов из стали с пределом текучести 1100 МПа?

Заметили ош Ы бку Выделите текст и нажмите Ctrl+Enter

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *