0

Два винта на одной оси

Среди большого количества схем вертолетов, разработанных до сих пор, широко распространена схема с двумя соосно расположенными несущими винтами, которая впервые была применена М. В. Ломоносовым на его «аэродромической машинке». Оба несущих винта в этой схеме находятся на одной оси, один под другим. Вал верхнего винта при этом проходит внутри полого вала нижнего винта. Винты вращаются в противоположных направлениях, поэтому на фюзеляж передаются два реактивных момента, взаимно уравновешивающих друг друга. Вертолеты, построенные по этой схеме, обладают хорошей маневренностью.

В частности, за счет изменения углов установки лопастей одного из винтов по сравнению с установочными углами лопастей другого винта (дифференциальное изменение общего шага винтов) достигается разность в их реактивных моментах, которая, передаваясь на фюзеляж, поворачивает вертолет в ту или иную сторону. Продольное и поперечное управление и управление подъемом и спуском будут описаны ниже. Сейчас заметим только, что принципы такого управления одинаковы для большинства вертолетов.

Вертолет с двумя винтами

В России по этой схеме был построен вертолет еще в 1907 г. конструктором Антоновым. Впоследствии эту схему применяли во многих странах. Современный вертолет конструкции II. И. Камова создан также по двухвинтовой соосной схеме.

Основными преимуществами вертолетов, построенных по этой схеме, являются их малый размер и небольшой вес. Это достигается отсутствием длинной хвостовой балки для установки рулевого винта н длинных валов для передачи крутящего момента от двигателя на винты, так как винты установлены на одной вертикальной оси почта рядом.

Любопытно отметить, что все вертолеты весом до 800 кг построены по двухвинтовой соосной схеме. Возможно, что именно такие вертолеты станут в недалеком будущем широко распространенными летательными аппаратами индивидуального пользования.

Эта схема, как и любая другая, не лишена недостатков. Так, вследствие того, что нижний винт работает в струе воздуха, отброшенной и закрученной верхним винтом, ухудшаются условия его работы и затруднен расчет винта при проектировании.

Вертолет с двумя продольно расположенными несущими винтами

Схема вертолета с продольно расположенными несущими винтами впервые была предложена Н. И. Сорокиным. Согласно этой схеме, один винт располагается над носовой частью фюзеляжа, а второй — над хвостовой. Оба винта могут приводиться во вращение одним или двумя двигателями. Направление вращения винтов противоположное для взаимного погашения реактивных моментов.

Вертолет с двумя несущими винтами

По этой схеме выгодно строить тяжелый многоместный вертолет, так как фюзеляж такого вертолета оказывается удобным помещением для грузов и пассажиров и, кроме того, вертолет этой схемы имеет хорошую продольную управляемость и допускает значительное изменение положения центра тяжести вдоль оси фюзеляжа. Так, если вертолет будет опускать нос, т. е. центр тяжести переместился вперед, то создастся пикирующий момент, который легко может быть устранен увеличением тяги носового винта при соответствующем уменьшении тяги винта, установленного в хвосте. При перемещении центра тяжести паза- мы должны будем увеличить тягу винта, установленного в хвосте, и уменьшить тягу носового винта.

Преимущество вертолета, построенного по этой схеме, состоит в том, что он имеет малое поперечное сечение фюзеляжа, а следовательно, малое вредное сопротивление, что позволяет летать с наибольшими скоростями.

Вертолет с двумя несущими винтами

Недостаток вертолета, построенного по этой схеме, в том, что задний винт при полете вертолета вперед работает в воздухе, предварительно возмущенном передним винтом, а это уменьшает его коэффициент полезного действия.

Показана модель вертолета с двумя продольно расположенными винтами. Лопасти несущих винтов вертолета для облегчения ангарного хранения могут быть изготовлены складывающимися над фюзеляжем, что сильно уменьшает габарит вертолета.

Ликбез по семи основным вертолетным схемам

Фотография: Official U.S. Navy Page / flickr.com

За последнее время в мире вертолетной техники произошло несколько значимых событий. Американская компания Kaman Aerospace объявила о намерении возобновить производство синхроптеров, Airbus Helicopters пообещала разработать первый гражданский вертолет с электродистанционным управлением, а немецкая e-volo — испытать 18-роторный двухместный мультикоптер. Чтобы не запутаться во всем этом разнообразии, мы решили составить краткий ликбез по основным схемам вертолетной техники.

Фотография: Official U.S. Navy Page / flickr.com

Впервые идея летательного аппарата с несущим винтом появилась около 400 года нашей эры в Китае, однако дальше создания детской игрушки дело не пошло. Всерьез инженеры взялись за создание вертолета в конце XIX века, а первый вертикальный полет нового типа летательного аппарата состоялся в 1907 году, спустя всего четыре года после первого полета братьев Райт. В 1922 году авиаконструктор Георгий Ботезат испытал вертолет-квадрокоптер, разработанный по заказу Армии США. Это был первый в истории устойчиво управляемый полет техники такого типа. Квадрокоптер Ботезата сумел взлететь на высоту пяти метров и провел в полете несколько минут.

С тех пор вертолетная техника претерпела множество изменений. Появился класс винтокрылых летательных аппаратов, который сегодня делится на пять типов: автожир, вертолет, винтокрыл, конвертоплан и X-крыло. Все они отличаются конструкцией, способом взлета и полета, управлением несущим винтом. В этом материале мы решили рассказать именно о вертолетах и их основных типах. При этом за основу была взята классификация по компоновке и расположению несущих винтов, а не традиционная — по типу компенсации реактивного момента несущего винта.

Фотография: Official U.S. Navy Page / flickr.com

Вертолет является винтокрылым летательным аппаратом, у которого подъемная и движущая силы создаются одним или несколькими несущими винтами. Такие винты располагаются параллельно земле, а их лопасти устанавливаются под определенным углом к плоскости вращения, причем угол установки может изменяться в достаточно широких пределах — от нуля до 30 градусов. Установка лопастей на ноль градусов называется холостым ходом винта или флюгированием. В этом случае несущий винт не создает подъемной силы.

Во время вращения лопасти захватывают воздух и отбрасывают его в направлении, противоположном движению винта. В результате перед винтом создается зона пониженного давления, а за ним — повышенного. В случае вертолета так возникает подъемная сила, которая очень похожа на образование подъемной силы фиксированным крылом самолета. Чем больше угол установки лопастей, тем большую подъемную силу создает несущий винт.

Характеристики несущего винта определяются двумя основными параметрами — диаметром и шагом. Диаметр винта определяет возможности вертолета по взлету и посадке, а также отчасти величину подъемной силы. Шаг винта — это воображаемое расстояние, которое воздушный винт пройдет в несжимаемой среде при определенном угле установки лопастей за один оборот. Последний параметр влияет на подъемную силу и скорость вращения ротора, которую на большей части полета летчики стараются держать неизменной, меняя только угол установки лопастей.

Читайте также:  Восстановление жесткого диска из под dos

Фотография: Wikimedia Commons

Фотография: Phillip Capper / flickr.com

При полете вертолета вперед и вращении несущего винта по часовой стрелке, набегающий поток воздуха сильнее воздействует на лопасти с левой стороны, из-за чего возрастает и их эффективность. В результате левая половина окружности вращения винта создает большую подъемную силу, чем правая, и возникает кренящий момент. Для его компенсации конструкторы придумали автомат перекоса — это особая система, которая уменьшает угол установки лопастей слева и увеличивает его справа, выравнивая таким образом подъемную силу по обе стороны винта.

В целом, вертолет имеет несколько преимуществ и несколько недостатков перед самолетом. К преимуществам относится возможность вертикального взлета и посадки на площадки, диаметр которых в полтора раза превосходит диаметр несущего винта. При этом вертолет может на внешней подвеске перевозить крупногабаритные грузы. Вертолеты отличаются и лучшей маневренностью, поскольку могут висеть вертикально, лететь боком или задом-наперед, поворачиваться на месте.

К недостаткам же относятся большее, чем у самолетов, потребление топлива, большая инфракрасная заметность из-за горячего выхлопа двигателя или двигателей, а также повышенная шумность. Кроме того, вертолетом в целом сложнее управлять из-за ряда особенностей. Например, летчикам вертолетов знакомы явления земного резонанса, флаттера, вихревого кольца, эффекта запирания несущего винта. Эти факторы могут приводить к разрушению или падению машины.

Фотография: Official U.S. Navy Page / flickr.com

Из всех типов вертолетных схем сегодня самой распространенной является классическая. При такой схеме машина имеет только один несущий винт, который может приводиться в движение одним, двумя или даже тремя двигателями. К этому типу, например, относятся ударные AH-64E Guardian, AH-1Z Viper, Ми-28Н, транспортно-боевые Ми-24 и Ми-35, транспортные Ми-26, многоцелевые UH-60L Black Hawk и Ми-17, легкие Bell 407 и Robinson R22.

При вращении несущего винта на вертолетах классической схемы возникает реактивный момент, из-за которого корпус машины начинает раскручиваться в сторону, противоположную вращению ротора. Для компенсации момента используют рулевое устройство на хвостовой балке. Как правило им является рулевой винт, но это может быть и фенестрон (винт в кольцевом обтекателе) или несколько воздушных сопел на хвостовой балке.

Белл AH-1Z «Вайпер».

Фотография: Wikimedia Commons

Особенностью классической схемы являются перекрестные связи в каналах управления, обусловленные тем, что рулевой винт и несущий приводятся одним и тем же двигателем, а также наличием автомата перекоса и множества других подсистем, ответственных за управление силовой установкой и роторами. Перекрестная связь означает, что при изменении какого-либо параметра работы воздушного винта, поменяются и все остальные. Например, при увеличении частоты вращения несущего винта возрастет и частота вращения рулевого.

Управление полетом осуществляется наклоном оси вращения несущего винта: вперед — машина полетит вперед, назад — назад, вбок — вбок. При наклоне оси вращения возникнет движущая сила и уменьшается подъемная. По этой причине для сохранения высоты полета летчику необходимо менять и угол установки лопастей. Направление полета задается изменением шага рулевого винта: чем он меньше, тем меньше компенсируется реактивный момент, и вертолет поворачивает в сторону, противоположную вращению несущего винта. И наоборот.

В современных вертолетах в большинстве случаев управление полетом по горизонтали осуществляется при помощи автомата перекоса. Например, для движения вперед летчик при помощи автомата уменьшает угол установки лопастей для передней половины плоскости вращения крыла и увеличивает — для задней. Таким образом сзади подъемная сила увеличивается, а спереди — уменьшается, благодаря чему изменяется наклон винта и появляется движущая сила. Такая схема управления полетом применяется на всех вертолетах почти всех типов, если на них установлен автомат перекоса.

Фотография: Wikimedia Commons

Фотография: Wikimedia Commons

Второй по распространенности вертолетной схемой является соосная. В ней рулевой винт отсутствует, зато есть два несущих винта — верхний и нижний. Они располагаются на одной оси и вращаются синхронно в противоположных направлениях. Благодаря такому решению винты компенсируют реактивный момент, а сама машина получается несколько более устойчивой по сравнению с классической схемой. Кроме того, у вертолетов соосной схемы практически отсутствуют перекрестные связи в каналах управления.

Фотография: Wikimedia Commons

Наиболее известным производителем вертолетов соосной схемы является российская компания «Камов». Она выпускает корабельные многоцелевые вертолеты Ка-27, ударные Ка-52 и транспортные Ка-226. Все они имеют по два винта, расположенных на одной оси друг под другом. Машины соосной схемы, в отличие от вертолетов классической схемы, способны, например, делать воронку, то есть выполнять облет цели по кругу, оставаясь на одном и том же расстоянии от нее. При этом носовая часть всегда остается развернутой в сторону цели. Управление рысканием осуществляется подтормаживанием одного из несущих винтов.

Фотография: Wikimedia Commons

В целом управлять вертолетами соосной схемы несколько проще, чем обычными, особенно в режиме висения. Но существуют и свои особенности. Например, при выполнении петли в полете может случиться перехлест лопастей нижнего и верхнего несущего винтов. Кроме того, в проектировании и производстве соосная схема более сложна и дорога, чем классическая схема. В частности из-за редуктора, передающего вращение вала двигателя на винты, а также автомата перекоса, синхронно устанавливающего угол лопастей на винтах.

Фотография: Wikimedia Commons

Продольная и поперечная схемы

Фотография: Wikimedia Commons

Третьей по популярности является продольная схема расположения несущих винтов вертолета. В этом случае винты располагаются параллельно земле на разных осях и разнесены друг от друга — один находится над носовой частью вертолета, а другой — над хвостовой. Типичным представителем машин такой схемы является американский тяжелый транспортный вертолет CH-47G Chinook и его модификации. Если винты располагаются на законцовках крыльев вертолета, то такая схема называется поперечной.

Серийных представителей вертолетов поперечной схемы сегодня не существует. В 1960-1970-х годах конструкторское бюро Миля разрабатывало тяжелый грузовой вертолет В-12 (также известен, как Ми-12, хотя этот индекс неверен) поперечной схемы. В августе 1969 года прототип В-12 установил рекорд грузоподъемности среди вертолетов, подняв на высоту 2,2 тысячи метров груз массой 44,2 тонны. Для сравнения самый грузоподъемный в мире вертолет Ми-26 (классическая схема) может поднимать грузы массой до 20 тонн, а американский CH-47F (продольная схема) — массой до 12,7 тонны.

Читайте также:  Действующие коды на айхерб

Боинг CH-47 «Чинук»

Фотография: Wikimedia Commons

У вертолетов продольной схемы несущие винты вращаются в противоположных направлениях, однако это компенсирует реактивные моменты лишь отчасти, из-за чего в полете летчикам приходится учитывать возникающую боковую силу, уводящую машину с курса. Движение в стороны задается не только наклоном оси вращения несущих винтов, но и разными углами установки лопастей, а управление рысканием производится за счет изменения частоты вращения роторов. Задний винт у вертолетов продольной схемы всегда располагается чуть выше переднего. Это сделано для исключения взаимного влияния от их воздушных потоков.

Кроме того, на определенных скоростях полета вертолетов продольной схемы иногда могут возникать значительные вибрации. Наконец, вертолеты продольной схемы оснащаются сложной трансмиссией. По этой причине такая схема расположения винтов распространена мало. Зато вертолеты продольной схемы меньше других машин подвержены возникновению вихревого кольца. В этом случае во время снижения воздушные потоки, создаваемые винтом, отражаются от земли вверх, затягиваются винтом и снова направляются вниз. При этом подъемная сила несущего винта резко снижается, а изменение частоты вращения ротора или увеличение угла установки лопастей эффекта практически не оказывает.

Боинг CH-47 «Чинук».

Фотография: Wikimedia Commons

Фотография: Wikimedia Commons

Сегодня вертолеты, построенные по схеме синхроптера, можно отнести к самым редким и наиболее интересными с конструктивной точки зрения машинами. Их производством до 2003 года занималась только американская компания Kaman Aerospace. В 2017 году компания планирует возобновить выпуск таких машин под обозначением K-Max. Синхроптеры можно было бы отнести к вертолетам поперечной схемы, поскольку валы двух их винтов расположены по бокам корпуса. Однако оси вращения этих винтов расположены под углом другу к другу, а плоскости вращения — пересекаются.

У синхроптеров, как у вертолетов соосной, продольной и поперечной схем, рулевой винт отсутствует. Несущие же винты вращаются синхронно в противоположные стороны, а их валы связаны друг с другом жесткой механической системой. Это гарантированно предотвращает столкновение лопастей при разных режимах и скоростях полета. Впервые синхроптеры были изобретены немцами во время второй мировой войны, однако серийное производство велось уже в США с 1945 года компанией Kaman.

Kaman K-1200 K-Max.

Фотография: Wikimedia Commons

Направлением полета синхроптера управляют исключительно изменением угла установки лопастей винтов. При этом из-за перекрещивания плоскостей вращения винтов, а значит сложения подъемных сил в местах перекрещивания, возникает момент кабрирования, то есть подъема носовой части. Этот момент компенсируется системой управления. В целом же, считается, что синхроптером проще управлять в режиме висения и на скоростях больше 60 километров в час.

К достоинствам таких вертолетов относится экономия топлива за счет отказа от рулевого винта и возможность более компактного размещения агрегатов. Кроме того, синхроптерам характерна большая часть положительных качеств вертолетов соосной схемы. К недостаткам же относится необычайная сложность механической жесткой связи валов винтов и системы управления автоматами перекоса. В целом это делает вертолет дороже, по сравнению с классической схемой.

Фотография: Wikimedia Commons

Фотография: Ville Hyvönen / flickr.com

Разработка мультикоптеров началась практически одновременно с работами над вертолетом. Именно по этой причине первым вертолетом, совершившим управляемый взлет и посадку стал в 1922 году квадрокоптер Ботезата. К мультикоптерам относят машины, как правило имеющие четное количество несущих винтов, причем их должно быть больше двух. В серийных вертолетах сегодня схема мультикоптеров не используется, однако она чрезвычайно популярна у производителей малой беспилотной техники.

Дело в том, что в мультикоптерах используются винты с неизменяемым шагом винта, причем каждый из них приводится в движение своим двигателем. Компенсация реактивного момента производится вращением винтов в разные стороны — половина крутится по часовой стрелке, а другая половина, расположенная по диагонали, — в противоположном направлении. Это позволяет отказаться от автомата перекоса и в целом значительно упростить управление аппаратом.

Для взлета мультикоптера частота вращения всех винтов увеличивается одинаково, для полета в сторону — вращение винтов на одной половине аппарата ускоряется, а на другой — замедляется. Поворот мультикоптера производится замедлением вращения, например, винтов, крутящихся по часовой стрелке или наоборот. Такая простота конструкции и управления и послужила основным толчком к созданию квадрокоптера Ботезата, однако последующее изобретение рулевого винта и автомата перекоса практически затормозило работы над мультикоптерами.

Гексакоптер DJI S800.

Фотография: Wikimedia Commons

Причиной же, по которой сегодня не существует мультикоптеров, предназначенных для перевозки людей, является безопасность полетов. Дело в том, что в отличие от всех остальных вертолетов, машины с несколькими винтами не могут совершать аварийную посадку в режиме авторотации. При отказе всех двигателей мультикоптер становится неуправляемым. Впрочем, вероятность такого события невысока, однако отсутствие режима авторотации является главным препятствием для прохождении сертификации на безопасность полетов.

Впрочем, в настоящее время немецкая компания e-volo занимается разработкой мультикоптера с 18 роторами. Этот вертолет предназначен для перевозки двух пассажиров. Как ожидается, он совершит первый полет в ближайшие несколько месяцев. По расчетам конструкторов, прототип машины сможет находиться в воздухе не больше получаса, однако этот показатель планируется довести по меньшей мере до 60 минут.

Следует также отметить, что помимо вертолетов с четным количеством винтов существуют и мультикоптерные схемы с тремя и пятью винтами. У них один из двигателей расположен на отклоняемой в стороны платформе. Благодаря этому осуществляется управление направлением полета. Впрочем, в такой схеме становится сложнее гасить реактивный момент, поскольку два винта из трех или три из пяти всегда вращаются в одном направлении. Для нивелирования реактивного момента некоторые из винтов вращаются быстрее, а это создает ненужную боковую силу.

Фотография: Wikimedia Commons

Сегодня наиболее перспективной в вертолетной технике считается скоростная схема, позволяющая вертолетам летать на существенно большей скорости, чем могут современные машины. Чаще всего такую схему называют комбинированным вертолетом. Машины этого типа строятся по соосной схеме или с одним винтом, однако имеют небольшое крыло, создающее дополнительную подъемную силу. Кроме того, вертолеты могут быть оснащены толкающим винтом в хвостовой части или двумя тянущими на законцовках крыла.

Читайте также:  Видеокарта для трех мониторов

Ударные вертолеты классической схемы AH-64E способны развивать скорость до 293 километров в час, а соосные Ка-52 — до 315 километров в час. Для сравнения, комбинированный вертолет — демонстратор технологий Airbus Helicopters X3 с двумя тянущими винтами может разгоняться до 472 километров в час, а его американский конкурент с толкающим винтом — Sikorksy X2 — до 460 километров в час. Перспективный разведывательный скоростной вертолет S-97 Ra >

Идея довольно старая. Ей более ста лет.
Происходит не от воздушных винтов, а от водных гребных винтов. В воздушных позже применили.

Достоинства:
1. Резко снижается закручивание отбрасываемой струи, поэтому выше КПД.
2. Больше максимальная тяга при том же диаметре винта (оба винта создают примерно одинаковую тягу, а в сумме вдвое больше чем одиночный).
3. Нет закручивания струи – не создается кренящий момент (для четного числа винтов это несущественно, но при одном винте – вполне чувствительно, в частности в торпедах такой винт применяют всегда, в первую очередь по этой причине – торпеда цилиндрического сечения, с малым восстанавливающим моментом, она крутиться вокруг своей оси будет при одиночном винте).

Недостатки – сложнее кинематика, больше деталей, дороже, больше весит.

На катерах такой двойной винт довольно часто применяется, видел неоднократно.

From: nukemall
2010-05-12 10:43 am (UTC)
From: warlen
2010-05-11 03:21 pm (UTC)
From: pogorily
2010-05-11 03:29 pm (UTC)
From: warlen
2010-05-11 03:36 pm (UTC)

Хы-хы, прочитал комментарии, там неожиданно много умных.

Если серьёзно, мы даже в детстве в рамках судомоделизма пробовали циклоидальное зацепление лопастей (это я по поводу одного из комментариев ниже). А уж что касается соосной схемы. я, знаете, запускал такую модельку. ну, на резиновом моторе. за внешний вид ей двойку поставили, а вот что касается ходовых качеств. мы на ней опробовали довольно мощную резинку и крупный винт, выяснилось, что модель от этого кренится и пытается опрокинуться. На следующей стадии поставили ещё один винт спереди. То есть "резинка" разматывалась на два винта, крутящихся в разные стороны.

Ой, бля, что было, чо было 🙂 Не, ну организаторы сами виноваты – по правилам модель 500 мм длиной и с резиномотором. Про мощу резиномотора и возможность снимать с него мощу сразу двумя винтами в правилах ничего не сказано. Соответственно, когда эта уродливая хуёвина начинает пиздовать с дикой скоростью, у организаторов глаза вылезают на лоб, но сделать уже ничего нельзя, остаётся только записать показания секундомеров.

Возвращаясь к нашему Ту-95, самое удивительное там редуктор. Остальное вполне очевидно. То есть даже в википедии всё правильно написано, как ни странно.

Да, кстати, эти заразы, Ту-95 то есть, естественно, на парад 9 мая летели как раз над мои домом. У меня судьба такой – всё летит над моим домом. "Лебеди" там ещё ладно, от них шума не так много. А вот Ту-95 мёртвого подымут.

From: the_toad
2010-05-11 04:28 pm (UTC)

Соосные противовращающиеся винты на Ту-95 были применены не потому, что они эффективнее.

А потому, что одинарные винты нужного диаметра никто не брался изготовить в срок. Нужно было менять станочный парк.

Ну, и, отчасти потому, что в срок не были готовы сами НК-12, и первые два экземпляра Ту-95 были с поршневыми двигателями (по два в каждой гондоле), что логично привело к идее использовать по винту на каждый двигатель и крутить их в противоположные стороны.

Не было бы счастья, да несчастье помогло. Или "голь на выдумки хитра".

Это не отменяет того, что противовращающиеся винты эффективнее одинарных 🙂

From: suvorow_
2010-05-11 08:26 pm (UTC)

Соосные противовращающиеся винты на Ту-95 были применены не потому, что они эффективнее.

Они были единственным средством достижения поставленной цели – "реактивной" скорости на винтовом самолёте.

А потому, что одинарные винты нужного диаметра никто не брался изготовить в срок. Нужно было менять станочный парк.

Ерунда. У винта "нужного диаметра" при потребной тяге на концах лопастей скорость потока превышала скорость звука, что делало задачу при том уровне развития аэродинамики нерешаемой. В настоящее время разработаны сверхзвуковые высокооборотные винт-вентиляторы, но они практически не применяются из-за запредельного уровня и крайне неприятного тембра создаваемого шума (см. и слуш. Ан-70).

Ну, и, отчасти потому, что в срок не были готовы сами НК-12, и первые два экземпляра Ту-95 были с поршневыми двигателями (по два в каждой гондоле), что логично привело к идее использовать по винту на каждый двигатель и крутить их в противоположные стороны.

Бред какой-то. Поршневым был Ту-85, а на первом Ту-95 стояли спарки из турбовинтовых ТВ-2Ф.

From: nukemall
2010-05-12 10:54 am (UTC)

Нет, не ерунда. Можно дополнительно увеличить диаметр винта, чтобы снизить обороты и отдалить проблему скорости. Можно применить пяти- или шестилопастный винт, к.п.д. чуть упадёт, но задачка решалась "при том уровне развития аэродинамики".
Но при этом дополнительно увеличивалась высота шасси и другие проблемы возникали.
Насчёт поршневых моторов я, конечно, перепутал, но спарка турбовинтовых всё равно была.

Во всяком случае, на ранних этапах проектирования Ту-95 винты были одинарные.

From: suvorow_
2010-05-12 11:06 am (UTC)

Нет, не ерунда. Можно дополнительно увеличить диаметр винта, чтобы снизить обороты и отдалить проблему скорости. Можно применить пяти- или шестилопастный винт, к.п.д. чуть упадёт, но задачка решалась "при том уровне развития аэродинамики".
Но при этом дополнительно увеличивалась высота шасси и другие проблемы возникали.

"КПД чуть упадёт" или "увеличивалась высота шасси" = "не достигнуты заданные дальность и скорость". Не говоря про то, что при увеличении диаметра растёт линейная скорость, так что "снизить обороты и отдалить проблему" не выйдет.

Во всяком случае, на ранних этапах проектирования Ту-95 винты были одинарные.

На ранних этапах вообще чего только не было – даже вариант с восемью-десятью турбореактивными двигателями.

From: nukemall
2010-05-12 11:53 am (UTC)

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *