0

Двухполярный регулируемый стабилизатор напряжения

Не так давно возникла насущная необходимость собрать двуполярный блок питания (взамен внезапно сгоревшего) по простой схеме и из доступных деталей. За основу была взята схема, опубликованная ранее на этом же сайте.

Исходная схема

По ссылке существует подробное описание сути работы и настройки, поэтому останавливаться на этих моментах и тонкостях не стану.

Сначала была собрана исходная однополярная схема для пробы и поиска возможных ошибок, про которые писали некоторые собиравшие данную конструкцию. У меня всё сразу заработало нормально, возникли лишь вопросы с регулировкой тока ограничения и индикацией срабатывания этого ограничения.

Поскольку исходная схема, как видно, разрабатывалась для выходных токов порядка 3 ампер и более, то и схема ограничения выходного тока соответствует этим заданным параметрам. Величина минимального тока ограничения определяется номиналом сопротивления R6, а с помощью переменного резистора R8 можно лишь несколоько увеличивать величину тока срабатывания защиты (чем меньше суммарное сопротивление резисторов R6 и R8, тем больше будет допустимый выходной ток). Светодиод VD6 служит для индикации работы блока питания и срабатывания защиты (при срабатывания защиты и ограничении тока на выходе он гаснет).

Далее была собрана аналогичная схема для напряжения отрицательной полярности — полностью аналогичная, лишь с заменой полярности включения электролитических конденсаторов, диодов (стабилитронов) и с применением транзисторов противоположной структуры (n-p-n / p-n-p). Обозначения элементов «минусового» плеча оставлены такими же, как у «плюсового» для упрощения рисования схемы 🙂

Новая схема БП

При изготовлении был применён валяющийся без дела трансформатор мощностью 60 ватт, с двумя вторичными обмотками по 28 вольт переменного напряжения и одной на 12 вольт (для питания дополнительных маломощных полезных устройств, например — кулера охлаждения радиаторов мощных транзисторов со схемой управления). Получившаяся схема приведена на рисунке.

Чтобы иметь возможность регулировать ваходной ток в широких пределах, вместо резисторов R6 и R8 в обоих плечах были применены наборы сопротивлений R6 — R9 и сдвоенный галетный преключатель на 5 положений. При этом резистор R6 определяет величину минимального тока ограничения, поэтому он включен в выходную цепь постоянно. Остальные же резисторы при помощи переключателя S1 подключаются параллелно этому R6, суммарное сопротивление уменьшается и выходной ток, соттветственно, увеличивается.

Резисторы R6 и R7 могут быть мощностью 0,5 ватт или более R8 — 1-2 ватта, а R9 — не менее 2 ватт (у меня стоят резисторы типа С5-16МВ-2ВТ и заметного их нагрева при нагрузке до 3 ампер не наблюдается). На схеме (рис.1) указаны значения выходных токов, при которых срабатывает защита и выходной ток даже при КЗ не превышает этих значений.

Здесь следует отметить, что индикация срабатывания защиты работает только при выходных токах более 3 ампер (то есть светодиод гаснет при сработке защиты), при меньших же токах светодиод не гаснет, хотя сама защита при этом срабатывает нормально, это проверено на практике.

Транзисторы Т1 (обозначение дано по исходной схеме, у меня это А1658 и КТ805) стоят без теплоотводов и практически вообще не нагреваются. Вместо А1658 можно поставить КТ837, например. Вообще, при сборке схемы мною пробовались самые разные транзисторы, соответствующие по структуре и мощности и всё работало без проблем. Переменный резистор R (сдвоенный, для синхронной регулировки выходного напряжения) применён советский, сопротивлением 4,7 кОм, хотя пробовались и сопротивления до 33 кОм, всё работало нормально. Разброс выходных напряжений по плечам составляет порядка 0,5-0,9 вольт, чего для моих целей, например, вполне достаточно. Хорошо бы, конечно, поставить сдвоенный переменник с меньшим разбросом сопротивлений, но таких пока нет под рукой.

Читайте также:  Биошок инфинити дополнения burial at sea

Стабилитроны VD1 — составные, по два соединённых последовательно Д814Д (14 + 14 = 28 вольт стабилизации). Следовательно, пределы регулировки выходных напряжений получились от 0 до 24 вольт. Диоды выпрямительных мостов — любые, соответствующей мощности, я использовал импортные диодные сборки — KBU 808 без радиатора (ток до 8 А) и ещё одну маломощную, без обозначения (?), для питания кулера.

На теплоотводы устаневлены только выходные регулирующие транзисторы КТ818, 819. Теплоотводы небольшие, что определено габаритами корпуса (по размеру он как БП от компа), поэтому потребовалось сделать дополнительное принудительное их охлаждение. Для этих целей был использован небольшой кулер (от системы обдува процессора старого компьютера) и простая схема управления, всё это питается от отдельной обмотки трансформатора, которая там оказалась весьма кстати.

В качестве термодатчика был использован германиевый транзистор типа МП42 (большие залежи остались и девать некуда. Оказалось, что замечательно работают в качестве термодатчиков!) Схема простая и понятная, в особом описании не нуждается. База транзистора-термодатчика никуда не подключается, этот вывод можно просто откусить, желательно только не своими зубами, а то стоматология нынче дорогое удовольствие!

Корпус этого транзистора металлический, поэтому его необходимо изолировать, например, трубкой-термоусадкой и расположить как можно ближе к теплоотводам выходных транзисторов. Температуру, при которой запускается кулер, можно регулировать подстроечным резистором (сопротивление может быть от 50 до 250 кОм). Максимальный ток и скорость вращения кулера определяются гасящим резистором в цепи питания. У меня это сопротивление 100 Ом (подбирается экспериментально, в зависимости от напряжения питания и тока потребления кулера).

Блок питания, собранный по данной схеме, неоднократно был испытан с нагрузкой во всём диапазоне выходных напряжений и токах от 30 мА до 3,5 ампер и показал свою полную работоспособность и надёжность работы. При токах более 2 ампер применённый трансформатор грелся довольно сильно из-за недостаточной его мощности, в остальном же схема вела себя вполне адекватно.

Есть возможность увеличить выходной ток нагрузки более 3-4 ампер, если использовать соответствующей мощности трансформатор и выходные (регулирующие) транзисторы, возможно применить параллельное включение нескольких мощных транзисторов. Схема не требует особой наладки и подбора компонентов, при изготовлении можно использовать практически любые транзисторы с коэффициентом усиления 80-350. Специально для сайта Радиосхемы, автор – Андрей Барышев

Обсудить статью ПРОСТОЙ ДВУХПОЛЯРНЫЙ БП С РЕГУЛИРОВКАМИ

Если имеются стабилизаторы положительного напряжения, то по логике вещей должны быть и стабилизаторы отрицательного напряжения. Строятся они по комплементарным симметричным схемам, т.е. с другой структурой проводимости транзисторов и с противоположной полярностью включения диодов, стабилитронов, электролитических конденсаторов.

Классификация стабилизаторов отрицательного и положительного напряжения одинакова: параметрические на стабилитронах и компенсационные на интегральных микросхемах. В последнем случае выручает схожесть названий. Например, эквивалентом для «положительной» серии 78хх является «отрицательная» серия 79хх.

Читайте также:  Как в ворде вставить несколько картинок

Сам по себе стабилизатор отрицательного напряжения интереса не представляет (всё в мире относительно!). Эффект от его применения наблюдается только при двухполярном питании. Такая необходимость возникает, в частности, если в устройстве кроме МК используются внешние ОУ, коммутаторы, АЦП.

На выходах стабилизаторов положительного и отрицательного напряжения ставят сглаживающие электролитические конденсаторы. В малогабаритной аппаратуре удобно применять «SMD-столбики» ёмкостью 1. 10000 мкФ, рассчитанные на рабочее напряжение 6.3. 100 В. Кроме того, при выборе типа электролитического конденсатора надо учитывать динамические параметры. Наиболее показательными из них являются предельный ток пульсаций RIPPLE (Ripple Current) — чем он больше, тем лучше, а также эквивалентное последовательное сопротивление ESR (Equivalent Series Resistance, по-русски ЭПС) — чем оно меньше, тем лучше. Динамические параметры для зарубежных конденсаторов нормируются на частоте 120 Гц или в диапазоне 100. 300 кГц.

Конденсатор, рассчитанный на большее напряжение, имеет меньшее сопротивление ESR. Например, у конденсатора 1000 мкФхб.З В по даташиту ESR = 53 мОм, а у конденсатора 1000 мкФх1б В по даташиту ESR = 23 мОм. Дальнейшее увеличение напряжения с 16 В до 35. 100 В не приводит к заметному снижению ESR. Следовательно, при питании МК от 5 В лучше поставить между Усс и GND конденсаторы с напряжением 16 В, а не на 6.3 В (заодно повышается надёжность работы).

ESR одного «большого» конденсатора обычно выше, чем ESR двух параллельных конденсаторов вдвое меньшей ёмкости, что видно из Табл. 6.4, поэтому выгодно по питанию запаять много «мелких» конденсаторов, равномерно распределяя их на печатной плате.

На Рис. 6.7, а. е показаны схемы параметрических, а Рис. 6.8, а. г — компенсационных двухполярных стабилизаторов напряжения.

Рис. 6.7. Схемы параметрических двухполярных стабилизаторов напряжения <начало)’.

а) два однополупериодных выпрямителя на элементах VDI, C1 и VD2, С2обеспечивают двух-полярное питание. Одинаковые стабилитроны VD3, VD4 создают примерно равную нагрузку на трансформатор 77 при положительной и отрицательной полуволнах сетевого напряжения. Это необходимо для устранения подмагничивания сердечника трансформатора 77. С той же целью применяется двухцветный (а не одноцветный) индикатор питания HL1, который проводит ток попеременно в обоих направлениях и светится суммарным жёлтым цветом;

б) двухполупериодный мостовой выпрямитель со средней точкой во вторичной обмотке трансформатора 77. Два стабилизатора напряжения выполнены по симметричным схемам. Они содержат стабилитроны VD2, VD3 и усилители тока на транзисторах VTI, VT2. Частота пульсаций двухполупериодной схемы — 100 Гц, что пригодится при расчёте необходимой ёмкости конденсаторов С1. С4

в) источник несимметричного двухполярного питания на батареях GBI, GB2. Эффект стабилизации создают сами батареи, поскольку они длительное время поддерживают на своих зажимах почти не изменяющееся напряжение; О

Рис. 6.7. Схемы параметрических двухполярных стабилизаторов напряжения (окончание):

г) получение двухполярного стабилизированного напряжения от трёхфазной сети 380 В. Конденсаторы C1. СЗбалластные. Снижение пульсаций на входе осуществляется фильтрами L1, С4, L2, С5, а на выходе — конденсаторами С6, С7. Транзисторы VTI, VT2 применяются одинаковой проводимости, поскольку не существует трёхвыводных стабилитронов VD7, VD8 обратной, т.е. «отрицательной», полярности. Аналогичную схемотехнику можно использовать и в сети 220 В, подавая переменное напряжение с диодного моста прямо на катушки индуктивности L1, L2. Ёмкости всех электролитических конденсаторов фильтра придётся увеличить, поскольку в трёхфазном выпрямителе частота пульсаций выше;

Читайте также:  Беспроводные наушники какие бывают

д) двухполярное питание от батареи GB1 с искусственной средней точкой на низкоомном делителе RI, R2. Собственно стабилизатором является сама батарея, которая поддерживает мало изменяющееся напряжение на своих зажимах вплоть до момента полного разряда. Конденсаторы C1. С5 снижают импеданс источника питания на низких и высоких частотах. Все электро-литтические конденсаторы в целях унификации можно выбрать одинаковыми на 16 В, несмотря на то, что рабочее напряжение конденсаторов С2, СЗ может быть меньше, чем у C1;

е) двухполярное питание обеспечивают два трёхвыводных стабилитрона VDI, VD2. Если не требуется двухполярное питание, то можно использовать однополярное 5 В, подключив общий провод GND к цепи -2.5 В, а положительный вывод Vcc — к цепи +2.5 В.

Рис. 6.8. Схемы компенсационных двухполярных стабилизаторов напряжения:

а) организация искусственной средней точки от одного источника питания. Компенсационный стабилизатор DA 1 находится в канале положительного напряжения, а параметрический стабилизатор на диодах VD2. VD4 — в канале отрицательного напряжения;

б) микросхема DAJ понижает входное напряжение до +5 В, а преобразователь DA2 (фирма Calogic Corporation) инвертирует полярность с сохранением абсолютного значения. Суммарный ток нагрузки по цепям +5 и -5 В не должен превышать 100 мА (максимально допустимый ток для DA1). Напряжение в канале -5 В зависит оттока нагрузки больше, чем в канале +5 В;

в)двухполярный стабилизатор напряжения на комплементарных микросхемах DAI, DA2. Диоды VD2, VD3 защищают радиоэлементы в каналах +5 и -5 В от подачи обратного напряжения. Такое может случиться при аварии или переходных процессах, когда одно из напряжений временно отсутствует. Если сопротивление Rn очень велико, то диоды VD2, VD3 не нужны;

г) стабилизаторы DAI, DA2 такого же типа, но в «перевёрнутом» включении.

Источник: Рюмик С.М. 1000 и одна микроконтроллерная схема.

Двухполярный регулируемый стабилизатор напряжения от 1.5 до 20 вольт, при токе нагрузки 3 – 5 ампер приведен на схеме ниже:

В этой схеме величину тока срабатывания защиты можно регулировать в пределах от 70 мА до максимального значения при помощи потенциометров R2 и R6 в соответствующем плече схемы. Основным регулирующим элементом схемы служит специализированная микросхема двухполярного стабилизатора напряжения К142ЕН6А. Для получения повышенного тока на плечах стабилизатора применены мощные транзисторные усилители.

Контроль схемы защиты обеспечивается светодиодами HL1, HL3, управляемыми транзисторами VT1 и VT5 соответственно. Светодиоды HL2 и HL4 контролируют наличие напряжения на выходе, в независимости от его величины. Резистор R10 регулирует выходное напряжение симметрично по обоим выходам в заданных пределах (1,5 – 20 В).

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *