0

Импульсный блок питания для усилителя своими руками

Представляю вашему вниманию импульсный источник питания для УМЗЧ на популярной микросхеме IR2153.

Данный блок питания обладает следующими достоинствами:

  • Защита от перегрузок и короткого замыкания как в первичной обмотке импульсного трансформатора, так и во вторичных цепях питания.
  • Схема плавного пуска ИБП.
  • Варистор на входе ИБП защищает от повышение сетевого напряжения выше опасного значения и от подачи на вход 380В.
  • Простая и дешевая схема.

Основные технические характеристики ИБП (характеристики приведены для моего конкретного экземпляра):
Долговременная выходная мощность – 300Вт
Кратковременная выходная мощность – 500Вт
Рабочая частота – 50кГц
Выходное напряжение – 2х35В (можно получить любое необходимое выходное напряжение в зависимости от намотки трансформатора).
КПД – не менее 85% (зависит от трансформатора)

Управляющая часть ИБП является стандартной и взята прямиком из даташита на IR2153.
Схема ИБП включает в себя так же: защиту от перегрузок и КЗ. Защита может быть настроена на любой необходимый ток срабатывания с помощью подстроечного резистора – R10. О срабатывании защиты свидетельствует свечение светодиода HL1. При активной защите, в аварийном состоянии ИБП может находится сколько угодно долго, при этом он потребляет ток такой же как и на холостом ходу без нагрузки. В моей версии защита настроена на срабатывание при потреблении от ИБП мощности 300Вт и более. Это гарантирует то, что ИБП не будет перегружен и не выйдет из строя в результате перегрева. В качестве датчика тока в данной схеме используются резисторы включенные последовательно с первичной обмоткой импульсного трансформатора. Это позволяет отказаться от трудоемкого процесса намотки токового трансформатора. При КЗ или перегрузке, когда падение напряжения на R11 достигает заданной величины, такой величины при котором на базе VT1 напряжение станет больше 0,6 – 0,7В, сработает защита и питание микросхемы будет шунтировано на землю. Что в свою очередь отключает драйвер и весь БП в целом. Как только перегрузка или КЗ устранено, питание драйвера возобновляется и блок питания продолжает работу в штатном режиме.

Схема ИБП предусматривает плавный пуск, для этого в ИБП присутствует специальный узел, который ограничивает пусковой ток. Это необходимо для того, чтобы облегчить работу ключам при запуске ИБП. При подключении ИБП в сеть, пусковой ток ограничивается резистором R6. Через данный резистор течет ВЕСЬ ток. Этим током заряжается основная первичная емкость С10 и вторичные емкости. Все это происходит в считанные доли секунд, и когда зарядка завершена и ток потребления снизился до номинального значения, происходит замыкание контактов реле К1 и контакты реле шунтируют R6, тем самым запуская ИБП на полную мощность. Весь процесс занимает не более 1 секунды. Этого времени достаточно чтобы завершились все переходные процессы.

Драйвер запитывается непосредственно от сети, через диод и гасящий резистор, а не после основного выпрямителя от шины +310В как это делают обычно. Такой способ запитки дает нам сразу несколько преимуществ:

1. Снижает мощность рассеиваемую на гасящем резисторе. Что снижает выделение тепла на плате и повышает общий КПД схемы.
2. В отличает от запитки по шине +310В обеспечивает более низкий уровень пульсаций напряжения питания драйвера.

На входе блока питания, сразу после предохранителя установлен варистор. Он служит для защиты от повышения напряжение в сети выше опасного предела. При аварии сопротивление варистора резко падает и происходит короткое замыкание, в следствии которого перегорает предохранитель F1, тем самым размыкая цепь.

Читайте также:  Если компьютер не видит планшет через usb

Таким вот образом я тестировал ИБП на полной мощности.

В качестве нагрузки у меня выступают 4 керамических, проволочных резистора мощностью 25Вт, погруженные в емкость с "кристально чистой" водой. После часа прохождения тока через такую воду все примеси всплывают наверх и чистая вода превращается в бурую, ржавую жижу. Вода усиленно испарялась и за час испытаний нагрелась практически до кипения. Вода необходима для отвода тепла от мощных резисторов, если кто не понял.

Трансформатор в моем варианте ИБП, намотан на сердечнике EPCOS ETD29. Первичная обмотка проводом 0,8мм2, 46 витков в два слоя. Все четыре вторичные обмотки намотаны тем же проводом в один слой по 12 витков. Может показаться, что сечение провода не достаточно, но это не так. Для работы этого ИБП на питание УМЗЧ этого достаточно, так как средняя потребляемая мощность значительно ниже максимальной, а кратковременные пики тока ИБП без труда отрабатывает за счет емкостей питания. При долговременной работе на резистор, при выходной мощности 200Вт, температура трансформатора не превысила 45 градусов.

Для увеличения выходного напряжение более 45В необходимо заменить выходные диоды VD5 VD6 на более высоковольтные.

Для увеличение выходной мощности необходимо использовать сердечник с большей габаритной мощностью и обмотками, намотанными проводом большего сечения. Для установки другого трансформатора придется изменить рисунок печатной платы.

Печатная плата в готовом виде выглядит так (выполнено ЛУТом):

Размеры платы 188х88мм. Текстолит я использовал с толстой медью – 50мкм, вместо стандартных 35мкм. Можно использовать медь стандартной толщины. В любом случае не забывайте хорошенько пролудить дорожки.

Представляю вашему вниманию импульсный источник питания для УМЗЧ на популярной микросхеме IR2153.

Данный блок питания обладает следующими достоинствами:

  • Защита от перегрузок и короткого замыкания как в первичной обмотке импульсного трансформатора, так и во вторичных цепях питания.
  • Схема плавного пуска ИБП.
  • Варистор на входе ИБП защищает от повышение сетевого напряжения выше опасного значения и от подачи на вход 380В.
  • Простая и дешевая схема.

Основные технические характеристики ИБП (характеристики приведены для моего конкретного экземпляра):
Долговременная выходная мощность – 300Вт
Кратковременная выходная мощность – 500Вт
Рабочая частота – 50кГц
Выходное напряжение – 2х35В (можно получить любое необходимое выходное напряжение в зависимости от намотки трансформатора).
КПД – не менее 85% (зависит от трансформатора)

Управляющая часть ИБП является стандартной и взята прямиком из даташита на IR2153.
Схема ИБП включает в себя так же: защиту от перегрузок и КЗ. Защита может быть настроена на любой необходимый ток срабатывания с помощью подстроечного резистора – R10. О срабатывании защиты свидетельствует свечение светодиода HL1. При активной защите, в аварийном состоянии ИБП может находится сколько угодно долго, при этом он потребляет ток такой же как и на холостом ходу без нагрузки. В моей версии защита настроена на срабатывание при потреблении от ИБП мощности 300Вт и более. Это гарантирует то, что ИБП не будет перегружен и не выйдет из строя в результате перегрева. В качестве датчика тока в данной схеме используются резисторы включенные последовательно с первичной обмоткой импульсного трансформатора. Это позволяет отказаться от трудоемкого процесса намотки токового трансформатора. При КЗ или перегрузке, когда падение напряжения на R11 достигает заданной величины, такой величины при котором на базе VT1 напряжение станет больше 0,6 – 0,7В, сработает защита и питание микросхемы будет шунтировано на землю. Что в свою очередь отключает драйвер и весь БП в целом. Как только перегрузка или КЗ устранено, питание драйвера возобновляется и блок питания продолжает работу в штатном режиме.

Читайте также:  Блок питания fsp nb v90

Схема ИБП предусматривает плавный пуск, для этого в ИБП присутствует специальный узел, который ограничивает пусковой ток. Это необходимо для того, чтобы облегчить работу ключам при запуске ИБП. При подключении ИБП в сеть, пусковой ток ограничивается резистором R6. Через данный резистор течет ВЕСЬ ток. Этим током заряжается основная первичная емкость С10 и вторичные емкости. Все это происходит в считанные доли секунд, и когда зарядка завершена и ток потребления снизился до номинального значения, происходит замыкание контактов реле К1 и контакты реле шунтируют R6, тем самым запуская ИБП на полную мощность. Весь процесс занимает не более 1 секунды. Этого времени достаточно чтобы завершились все переходные процессы.

Драйвер запитывается непосредственно от сети, через диод и гасящий резистор, а не после основного выпрямителя от шины +310В как это делают обычно. Такой способ запитки дает нам сразу несколько преимуществ:

1. Снижает мощность рассеиваемую на гасящем резисторе. Что снижает выделение тепла на плате и повышает общий КПД схемы.
2. В отличает от запитки по шине +310В обеспечивает более низкий уровень пульсаций напряжения питания драйвера.

На входе блока питания, сразу после предохранителя установлен варистор. Он служит для защиты от повышения напряжение в сети выше опасного предела. При аварии сопротивление варистора резко падает и происходит короткое замыкание, в следствии которого перегорает предохранитель F1, тем самым размыкая цепь.

Таким вот образом я тестировал ИБП на полной мощности.

В качестве нагрузки у меня выступают 4 керамических, проволочных резистора мощностью 25Вт, погруженные в емкость с "кристально чистой" водой. После часа прохождения тока через такую воду все примеси всплывают наверх и чистая вода превращается в бурую, ржавую жижу. Вода усиленно испарялась и за час испытаний нагрелась практически до кипения. Вода необходима для отвода тепла от мощных резисторов, если кто не понял.

Трансформатор в моем варианте ИБП, намотан на сердечнике EPCOS ETD29. Первичная обмотка проводом 0,8мм2, 46 витков в два слоя. Все четыре вторичные обмотки намотаны тем же проводом в один слой по 12 витков. Может показаться, что сечение провода не достаточно, но это не так. Для работы этого ИБП на питание УМЗЧ этого достаточно, так как средняя потребляемая мощность значительно ниже максимальной, а кратковременные пики тока ИБП без труда отрабатывает за счет емкостей питания. При долговременной работе на резистор, при выходной мощности 200Вт, температура трансформатора не превысила 45 градусов.

Для увеличения выходного напряжение более 45В необходимо заменить выходные диоды VD5 VD6 на более высоковольтные.

Для увеличение выходной мощности необходимо использовать сердечник с большей габаритной мощностью и обмотками, намотанными проводом большего сечения. Для установки другого трансформатора придется изменить рисунок печатной платы.

Печатная плата в готовом виде выглядит так (выполнено ЛУТом):

Размеры платы 188х88мм. Текстолит я использовал с толстой медью – 50мкм, вместо стандартных 35мкм. Можно использовать медь стандартной толщины. В любом случае не забывайте хорошенько пролудить дорожки.

Читайте также:  Готика 2 как изменить разрешение экрана

Сейчас редко кто внедряет в самодельную конструкцию усилителя сетевой трансформатор, и правильно – импульсный бп более дешевый, легкий и компактный, а хорошо собранный почти не отдает помех в нагрузку (либо помехи сведены к минимуму).

Разумеется, не спорю, сетевой трансформатор гораздо, гораздо надежней, хотя и современные импульсники, напичканные всевозможными защитами тоже неплохо справляются со своей задачей.

IR2153 – я бы сказал уже легендарная микросхема, которая применяется радиолюбителями очень часто, и внедряется именно в сетевые импульсные источники питания. Микросхема из себя представляет простой полумостовой драйвер и в схемах иип работает в качестве генератора импульсов.

На основе данной микросхемы строятся блоки питания от нескольких десятков до нескольких сотен ватт и даже до 1500 ватт, разумеется с ростом мощности будет усложняться схема.

Тем не менее не вижу смысла делать иип высокой мощности с применением именно этой микросхемы, причина – невозможно организовать выходную стабилизацию или контроль, и не только Микросхема не является ШИМ контроллером, следовательно ни о каком ШИМ управлении не может идти и речи, а это очень плохо. Хорошие иип как право делают на двухтактных микросхемах ШИМ, к примеру ТЛ494 или ее сородичи и т.п, а блок на IR2153 в большей степени блок начинающего уровня.

Перейдем к самой конструкции импульсного источника питания. Все собрано по даташиту – типичный полумост, две емкости полумоста, которые постоянно находятся в цикле заряд/разряд. От емкости этих конденсаторов будет зависеть мощность схемы в целом (ну разумеется не только от них). Расчетная мощность именно этого варианта составляет 300 ватт, мне больше и не нужно, сам блок для запитки двух каналов унч. Емкость каждого из конденсаторов 330мкФ, напряжение 200 Вольт, в любом компьютерном блоке питания как раз стоят такие конденсаторы, по идее схематика комповых бп и нашего блока в чем то схоже, в обеих случаях топология – полумост.

На входе блока питания тоже все как положено – варистор для защиты от перенапряжений, предохранитель, сетевой фильтр ну и разумеется выпрямитель. Полноценный диодный мост, который можно и взять готовый, главное, чтобы мост или диоды имели обратное напряжение не менее 400 Вольт, в идеале 1000, и с током не менее 3Ампер. Разделительный конденсатор – пленка , 250 В а лучше 400, емкость 1мкФ, к стати – тоже можно найти в компьютерном блоке питания.

Трансформатор Рассчитан по программе, сердечник от компового бп, габаритные размеры увы указать не могу. В моем случае первичная обмотка 37 Витков проводом 0,8мм, вторичная 2 по 11 витков шиной из 4-х проводов 0.8мм. С таким раскладом выходное напряжение в районе 30-35 Вольт, разумеется, намоточные данные будут у всех разные, в зависимости от типа и габаритных размеров сердечника.

Все резисторы 0,25 ватт, кроме двух резисторов 51 Ом в снабберной цепи (они на 2 ватт) и резистора по питанию микры (тоже на 2, если есть, то ставьте на 5 ватт). Во время работы источника питания нагрев на указанных резисторах нормальное явление.
Шаблон печатной платы можно скачать ниже, размеры уже установлены, зеркалить платку тоже нет необходимости.

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *