0

К1156еу2р описание и характеристики

Описание микросхемы 1156ЕУ2 (UC1825, UC2825, UC3825) (10+)

ШИМ контроллер 1156ЕУ2 и его аналоги

Микросхема 1156ЕУ2 – типичный ШИМ – контроллер. Основные принципы работы и выводы ШИМ – контроллера описаны в статье по ссылке. Эта микросхема предназначена для управления силовыми ключами на полевых транзисторах. Микросхема имеет выводы для управления двухтактным силовым какадом. Для управления однотактным выходным каскадом применяется контроллер 1156ЕУ3 / К1156ЕУ3 / КР1156ЕУ3. 1156ЕУ2 / К1156ЕУ2 / КР1156ЕУ2 может применяться для управления биполярными транзисторами. Зарубежный аналог – UC1825, UC2825, UC3825. В России микросхема выпускается в пластмассовом и никелевом корпусах. В пластмассовом корпусе она много дешевле, а преимуществ никелевого корпуса мы не заметили.

Параметры 1156ЕУ2

Здесь я приведу основные параметры этого контроллера. Общие принципы работы по ссылке выше.

Вашему вниманию подборки материалов:

Конструирование источников питания и преобразователей напряжения Разработка источников питания и преобразователей напряжения. Типовые схемы. Примеры готовых устройств. Онлайн расчет. Возможность задать вопрос авторам

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Максимальный импульсный управляющий ток: 1.5 А. Это означает, что выход микросхемы должен быть соединен с затором полевого транзистора через токоограничивающий резистор 10 Ом при напряжении питания 15 В и 20 Ом, при питании 30 В.

Ток мягкого запуска: 9 мкА.

Опорное (образцовое) напряжение: 5.1 В.

Разница между максимальным и минимальным напряжением, задающим длительность импульса (Напряжение для сравнения) (Ramp Valley to Peak): 1.8 В. Эта величина нужна при расчете цепей компенсации контура обратной связи по напряжению. При минимальном напряжении микросхема вообще не открывает силовые ключи, при максимальном – открывает каждый ключ практически на половину периода.

Напряжение на выводе ограничения тока, при котором ток начинает ограничиваться: 1 В.

Напряжение на выводе ограничения тока, при котором происходит рестарт контроллера: 1.4 В. При таком напряжении ножка мягкого старта замыкается на общий провод.

Минимальное напряжение питания: 9.2 В.

Максимальное напряжение питания: 30 В.

Максимальная частота работы контролера: 1 МГц. Реальная частота задается резистором RT и конденсатором CT. К резистору RT приложено напряжение 3 В. Конденсатор CT заряжается током, равным удвоенному току через резистор RT (по нашим данным именно удвоенному, хотя документация говорит о токе, равном току через резистор, но чтобы за период произошло открытие обоих плеч, ток должен быть удвоенным). Когда напряжение достигает 2 В, происходит сброс напряжения до нуля. Так что частота может быть вычислена по формуле:

[Частота работы контроллера, кГц] = 3 / [Сопротивление резистора RT, кОм] / [Емкость конденсатора CT, мкФ] / 2

Описание микросхемы 1156ЕУ2 (UC1825, UC2825, UC3825) (10+)

ШИМ контроллер 1156ЕУ2 и его аналоги

Микросхема 1156ЕУ2 – типичный ШИМ – контроллер. Основные принципы работы и выводы ШИМ – контроллера описаны в статье по ссылке. Эта микросхема предназначена для управления силовыми ключами на полевых транзисторах. Микросхема имеет выводы для управления двухтактным силовым какадом. Для управления однотактным выходным каскадом применяется контроллер 1156ЕУ3 / К1156ЕУ3 / КР1156ЕУ3. 1156ЕУ2 / К1156ЕУ2 / КР1156ЕУ2 может применяться для управления биполярными транзисторами. Зарубежный аналог – UC1825, UC2825, UC3825. В России микросхема выпускается в пластмассовом и никелевом корпусах. В пластмассовом корпусе она много дешевле, а преимуществ никелевого корпуса мы не заметили.

Читайте также:  Как восстановить контакты в телефонной книге

Параметры 1156ЕУ2

Здесь я приведу основные параметры этого контроллера. Общие принципы работы по ссылке выше.

Вашему вниманию подборки материалов:

Конструирование источников питания и преобразователей напряжения Разработка источников питания и преобразователей напряжения. Типовые схемы. Примеры готовых устройств. Онлайн расчет. Возможность задать вопрос авторам

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Максимальный импульсный управляющий ток: 1.5 А. Это означает, что выход микросхемы должен быть соединен с затором полевого транзистора через токоограничивающий резистор 10 Ом при напряжении питания 15 В и 20 Ом, при питании 30 В.

Ток мягкого запуска: 9 мкА.

Опорное (образцовое) напряжение: 5.1 В.

Разница между максимальным и минимальным напряжением, задающим длительность импульса (Напряжение для сравнения) (Ramp Valley to Peak): 1.8 В. Эта величина нужна при расчете цепей компенсации контура обратной связи по напряжению. При минимальном напряжении микросхема вообще не открывает силовые ключи, при максимальном – открывает каждый ключ практически на половину периода.

Напряжение на выводе ограничения тока, при котором ток начинает ограничиваться: 1 В.

Напряжение на выводе ограничения тока, при котором происходит рестарт контроллера: 1.4 В. При таком напряжении ножка мягкого старта замыкается на общий провод.

Минимальное напряжение питания: 9.2 В.

Максимальное напряжение питания: 30 В.

Максимальная частота работы контролера: 1 МГц. Реальная частота задается резистором RT и конденсатором CT. К резистору RT приложено напряжение 3 В. Конденсатор CT заряжается током, равным удвоенному току через резистор RT (по нашим данным именно удвоенному, хотя документация говорит о токе, равном току через резистор, но чтобы за период произошло открытие обоих плеч, ток должен быть удвоенным). Когда напряжение достигает 2 В, происходит сброс напряжения до нуля. Так что частота может быть вычислена по формуле:

[Частота работы контроллера, кГц] = 3 / [Сопротивление резистора RT, кОм] / [Емкость конденсатора CT, мкФ] / 2

Следующая схема импульсного источника питания с полумостовым преобразователем с регулируемым выходным напряжением без стабилизации используется для питания паяльной станции. Построение и наладка этого источника питания не вызывают затруднений, что является главным его достоинством. Узел управления выполнен на микросхеме КР1156ЕУ2, которая представляет собой высокочастотный ШИМ-контроллер, оптимизированный для построения двухтактных высокочастотных импульсных источников питания.

Схема устройства приведена на рис. 5.23. Напряжение сети поступает на фильтр CI, LI, С2, выпрямляется диодным мостом VD1 и через токоограничительный резистор R6 заряжает конденсаторы С11 и С12, образующие одно плечо моста. Другое плечо образовано транзисторами VT1, VT2. В диагональ моста включена первичная обмотка трансформатора Т2. Полевые транзисторы VT1, VT2 поочередно открываются импульсами с выхода микросхемы DA1, причем VT2 управляется непосредственно от микросхемы, a VT1 — через трансформатор Т1, служащий для гальванической развязки. В цепи затворов включены резисторы R8 и R9, которые совместно с емкостями затворов образуют НЧ фильтры, снижающие помехи при переключении.

Микросхема ШИМ-контроллера КР1156ЕУ2 имеет два выходных каскада (выводы 11, 14), рассчитанные на значительный выходной ток (как втекающий, так и вытекающий): постоянный — 0,5 А, импульсный — до 2 А. Управляется микросхема внутренним генератором, частота которого задается подключением резистора к выводу 5 и конденсатора к выводу 6 (R5, С7 на рис. 5.23). Частота преобразователя в данном случае выбрана равной 50 кГц.

Читайте также:  Интернет долго грузит страницы скорость хорошая

Для широтно-импульсной модуляции выходных сигналов служит устройство, состоящее из триггеров и усилителя сигнала ошибки. С помощью усилителя сигнала ошибки можно осуществить стабилизацию выходного напряжения за счет сравнения части выходного напряжения с опорным, подключив соответствующим образом отрицательную обратную связь на вход усилителя. Однако в данной конструкции эта возможность не используется, поэтому соединения сделаны следующим образом. На неинвертирующий вход микросхемы (вывод 2) подано напряжение +5,1 В с источника опорного напряжения (вывод 16). На вывод 7 подано пилообразное напряжение с вывода 6. Инвертирующий вход усилителя (вывод 1) соединен с общим проводом через резистор R4.

При таком включении усилитель сигнала ошибки установлен на максимальную длительность выходных импульсов. Для управления длительностью импульсов использована другая возможность контроллера — узел «мягкого запуска» с выводом 8. Если на этот вывод подать изменяющееся приблизительно от 2,25 до 4,5 В напряжение, то длительность выходных импульсов будет регулироваться в пределах 0…100% от максимальной. Максимальная длительность импульсов составляет, соответственно, 80% от длительности полупериода.

Ток по выводу 8 очень мал (порядка 10 мкА); подключением конденсатора к этому выводу ,можно осуществить так называемый «мягкий запуск», когда работа преобразователя начинается с минимальной длительности импульсов, и постепенно, за счет заряда конденсатора, увеличивается до стационарного значения. В данном устройстве длительность импульсов, а значит, и выходное напряжение, регулируется переменным резистором R2. Резистор включен в цепочку делителя R1…R3, подключенную к опорному напряжению +5,1 В.

Назначение вывода 9 микросхемы — защита по току. Если ток через транзистор VT2 превысит 1 А, то напряжение на выводе 9 будет более 1 В и выходы микросхемы переключатся в состояние «выключено» до окончания текущего цикла. Напряжение питания микро-

схемы поступает на вывод 15. Отдельные выводы силового питания (вывод 13) и общего провода (вывод 12) позволяют, при необходимости, развязать по питанию мощный выходной каскад, являющийся источником помех, от остальной части преобразователя.

Напряжение питания на микросхему поступает с выпрямителя на диодах VD12, VD13 и конденсаторе СЮ. При включении устройства в сеть это напряжение отсутствует, поэтому необходимо решить проблему первоначального пуска. Для этого используется следующая особенность микросхемы. Если напряжение питания микросхем меньше 9 В, контроллер находится в выключенном состоянии, сигналы на выходах А и В отсутствуют, микросхема потребляет ток порядка 1 мА и не шунтирует конденсатор С6, который заряжается через резистор R7.

При достижении напряжения приблизительно 9,8 В микросхема включается. Преобразователь запускается, на обмотке III трансформатора появляется напряжение, которое выпрямляется и обеспечивает питание микросхемы во время работы (около 15 В в данном устройстве). Вывод 15 микросхемы имеет гистерезис около 0,8 В, поэтому выключится микросхема только при снижении напряжения питания ниже 9 В, в результате кратковременное снижение напряжения на выводе 15 при запуске микросхемы не приводит к ее выключению.

Читайте также:  Выбор насоса для грязной воды

Как уже говорилось, форма сигнала на выходах А и В (выводы 11 и 14, соответственно) представляет собой попеременно появляющиеся импульсы с максимальной длительностью 80% от полупериода, поэтому между закрыванием одного транзистора и открыванием другого есть достаточно большой интервал. В результате момент, когда оба транзистора открыты, исключен, и сквозные токи отсутствуют.

Выходное напряжение с обмотки II выпрямляется диодами VD14…VD17 и через дроссель L2 поступает на конденсатор С13 и далее на выход преобразователя. Назначение дросселя L2 — выделение из выпрямленной последовательности прямоугольных импульсов постоянной составляющей. В паузах между импульсами выпрямленного напряжения все диоды выпрямителя оказываются открытыми, и через них энергия, накопленная в дросселе, поступает в нагрузку.

В блоке применены детали импортного и отечественного производства: VD1 — диодный мост W06M с обратным напряжением

600 В и максимальным током 1,5 А; СП, С12 — по два параллельно соединенных конденсатора 47 мкФ 160 В фирмы Jamicon; VD14…VD17 — импортные диоды SF22 с обратным напряжением 100 В и максимальным током 2 А; время восстановления 35 не. Следует отметить, что от быстродействия этих диодов сильно зависит КПД и уровень помех устройства.

Трансформатор Т1 намотан на кольце К10х6х4,5 из феррита М2000НМ1, число витков обмоток I — 50, II — 40, диаметр провода 0,15 мм, трансформатор Т2 намотан на кольце К31х18,5х7 из феррита М1000НМ1, обмотка I содержит 160 витков провода ПЭВ-1 диаметром 0,3 мм, II — 40 витков такого же провода диаметром 0,6 мм, III — 2×15 витков провода диаметром 0,15 мм. Дроссель L2 намотан на кольце К20х10х5 из феррита М2000НМ1 с зазором в кольце 1,5 мм; число витков — 110, провод диаметром 0,5 мм. Зазор выполнен ножовкой по металлу или «болгаркой» алмазным кругом, в зазор для прочности вклеена прокладка из текстолита.

Транзисторы установлены на небольшие радиаторы. VD7, VD8 — по два последовательно соединенных стабилитрона на суммарное напряжение стабилизации 18 В. Остальные детали — типовые для импульсных источников.

При налаживании устройства к выводам 15 и 10 микросхемы DA1 подключается внешний источник питания +12 В и проверяется наличие сигналов на выходах А и В, их форму и изменение длительности импульсов при регулировании резистором R2. При необходимости подбираются резисторы R1 и R3 на необходимый диапазон регулирования.

Далее вместо 220 В подключается напряжение порядка 30…40 В, не отключая источник +12 В, и проверяется сигнал в точке соединения транзисторов, а также формирование напряжений на выходе устройства и на конденсаторе СЮ. Напряжения должны быть пропорционально уменьшенными по сравнению со стационарным режимом.

После этого убирается источник +12 В и устройство можно включить в сеть 220 В. В последнюю очередь уточняется число витков обмоток I и III трансформатора Т2: III — для обеспечения питания +15 В, а также обмотки II — на необходимое максимальное напряжение источника.

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *