0

Как возвести число в отрицательную степень пример

Прежде чем перейти к изучению определения «отрицательная степень» рекомендуем повторно прочитать урок «Степень» и «Свойства степеней».

Необходимо уверенно понимать, что такое положительная степень числа и уверенно использовать её свойства в решении примеров.

Как возвести число в отрицательную степень

Чтобы возвести число в отрицательную степень нужно:

  • «перевернуть» число. Записать его в виде дроби с единицой наверху (в числителе) и с исходным числом в степени внизу;
  • заменить отрицательную степень на положительную ;
  • возвести число в положительную степень.

Общая формула возведения в отрицательную степень выглядит следующим образом.

a −n =

1
a n

,где a ≠ 0, n ∈ z ( n принадлежит целым числам).

Примеры возведения в отрицательную степень.

  • 6 −2 =
    1
    6 2

    =

    1
    36
  • (−3) −3 =
    1
    (−3) 3

    =

    1
    −27

    = −

    1
    27
  • 0,2 −2 =
    1
    0,2 2

    =

    1
    0,04

Любое число в нулевой степени — единица.

Примеры возведения в нулевую степень.

  • (
    2
    3

    ) 0 = 1

  • (−5) 0 = 1

Как найти 10 в минус 1 степени

В уроке 8 класса «Стандартный вид числа» мы уже сталкивались с записью:

Теперь, зная определение отрицательной степени, давайте разберемся, почему « 10 » в минус первой степени равно « 0,1 ».

Возведем « 10 −1 » по правилам отрицательной степени. Перевернем « 10 » и запишем её в виде дроби «

1
10

» и заменим отрицательную степень « −1 » на
положительную степень « 1 ».

10 −1 =

1
10 1

Возведем « 10 » в « 1 » степень. Помним, что любое число в первой степени равно самому числу.

10 −1 =

1
10 1

=

1
10

Теперь по определению десятичной дроби запишем обыкновенную дробь в виде десятичной.

10 −1 =

1
10 1

=

1
10

= 0,1

По такому же принципу можно найти « 10 » в минус второй, третьей и т.д.

Для упрощения перевода « 10 » в минус первую, вторую и т.д степени, нужно запомнить правило:
«Количество нулей после запятой равно положительному значению степени минус один ».

Проверим правило выше для « 10 −2 ».

Т.к. у нас степень « −2 », значит, будет всего один ноль (положительное значение степени « 2 − 1 = 1 ». Сразу после запятой ставим один ноль и за ним « 1 ».

Рассмотрим « 10 −1 ».

Т.к. у нас степень « −1 », значит, нулей после запятой не будет (положительное значение степени « 1 − 1 = 0 ». Сразу после запятой ставим « 1 ».

То же самое правило работает и для « 10 −12 ». При переводе в десятичную дробь будет « 12 − 1 = 11 » нулей и « 1 » в конце.

Как возвести в отрицательную степень дробь

Чтобы возвести дробь в отрицательную степень нужно:

  • «перевернуть» дробь;
  • заменить отрицательную степень на положительную ;
  • возвести дробь в положительную степень.

Пример. Требуется возвести в отрицательную степень дробь.

(

10
3

) −3 =
Перевернем дробь «

10
3

» и заменим отрицательную степень « −3 » на положительную « 3 ».
(

10
3

) −3 = (

3
10

) 3

Возведем дробь в положительную степень по правилу возведения дроби в положительную степень. Т.е. возведем и числитель « 3 », и знаменатель « 10 » в третью степень.

(

10
3

) −3 = (

3
10

) 3 =

3 3
10 3

=

27
1000

Для более грамотного ответа запишем полученный результат в виде десятичной дроби.

(

10
3

) −3 = (

3
10

) 3 =

3 3
10 3

=

27
1000

= 0,027

Как возвести отрицательное число в отрицательную степень

Как и при возведении отрицательного числа в положительную степень, в первую очередь необходимо определить конечный знак результата возведения в степень. Вспомним основные правила еще раз.

Отрицательное число, возведённое в чётную степень, — число положительное .

Отрицательное число, возведённое в нечётную степень, — число отрицательное .

Перевернем число « −5 » и заменим отрицательную степень « −2 »
на положительную « 2 ».

(−5) −2 = (−

1
5

) 2 =

Так как степень « 2 » — четная , значит, результат возведения в степень будет положительный . Поэтому убираем знак минуса при раскрытии скобок.

Далее откроем скобки и возведем во вторую степень и числитель « 1 »,
и знаменатель « 5 ».

(−5) −2 = (−

1
5

) 2 =

1 2
5 2

=

1
25

Как возвести отрицательную дробь в отрицательную степень

Конечный знак результата возведения в степень отрицательной дроби определяется по тем же правилам, что и для целого отрицательного числа.

Отрицательная дробь, возведённая в чётную степень, — дробь положительная .

Отрицательная дробь, возведённая в нечётную степень, — дробь отрицательная .

Разберемся на примере. Задание: возвести отрицательную дробь « (−

2
3

) » в « −3 » степень.

По правилу возведения дроби в отрицательную степень перевернем дробь и заменим отрицательную степень « −3 » на положительную « 3 ».

(−

2
3

) −3 = (−

3
2

) 3 =

Теперь определим конечный знак результата возведения в « 3 » степень.

Степень « 3 » — нечетная , значит, по правилу возведения отрицательного числа в степень дробь останется отрицательной .

Нам остается только раскрыть скобки и возвести в степень и числитель « 3 », и знаменатель « 2 » в третью степень.

(−

2
3

) −3 = (−

3
2

) 3 = −

3 3
2 3

= −

27
8

Для окончательного ответа выделим целую часть из дроби.

(−

2
3

) −3 = (−

3
2

) 3 = −

3 3
2 3

= −

27
8

= − 3

3
4

Рассмотрим другой пример возведения отрицательной дроби в отрицательную степень.

Правило возведения отрицательного числа в степень гласит: если степень четная , значит, результат возведения будет положительным .

(−

9
11

) −2 = (−

11
9

) 2 =

11 2
9 2

=

121
81

= 1

40
81

Свойства отрицательной степени

Все свойства степени, которые используются для положительной степени, точно также применяются и для отрицательной степени.

В этом уроке мы не будем повторно подробно разбирать каждое свойство степени, но еще раз приведем основные формулы свойств степени и покажем примеры их использования.

Запомните!

  • a m · a n = a m + n
  • a m
    a n

    = a m − n

  • (a n ) m = a n · m
  • (a · b) n = a n · b n

Примеры решений заданий с отрицательной
степенью

Колягин 9 класс. Задание № 1

Представить в виде степени.

2) a 6 · b 6 = (ab) 6

Колягин 9 класс. Задание № 5

Записать в виде степени с отрицательным числом.

Запись a n означает что число a должно быть умножено n раз:

Пример 1. 5 3 =5*5*5=125

Деление это обратная операция умножению. Отрицательная степень означает сколько раз нужно разделить число.

Число в отрицательной степени a -n может быть записано в виде:

Пример 2 может быть записан в виде.
Определение. Если a≠0 и n — целое отрицательное число, то

Для вычисления числа a -n в отрицательной степени нужно:

1.Вычислить a n

2.Затем разделить 1 на полученный результат, т.е.

Воспользуйтесь калькулятором для вычисления числа в отрицательной степени.

В одной из предыдущих статей мы уже упоминали о степени числа. Сегодня мы постараемся сориентироваться в процессе нахождения ее значения. Научно говоря, мы будем выяснять, как правильно возводить в степень. Мы разберемся, как производится этот процесс, одновременно затронем все вероятные показатели степени: натуральный, иррациональный, рациональный, целый.

Итак, давайте подробно рассмотрим решения примеров и выясним, что значит:

  1. Определение понятия.
  2. Возведение в отрицательную ст.
  3. Целый показатель.
  4. Возведение числа в иррациональную степень.

Определение понятия

Вот точно отражающее смысл определение: «Возведением в степень называют определение значения степени числа».

Соответственно, возведение числа a в ст. r и процесс нахождения значения степени a с показателем r — это идентичные понятия. К примеру, если стоит задача вычислить значение степени (0,6)6″, то ее можно упростить до выражения «Возвести число 0,6 в степень 6».

После этого можно приступать напрямую к правилам возведения.

Возведение в отрицательную степень

Минусовая степень обозначает, что число множат на него самого такое количество раз, какое значится в ст., а после этого единицу делят на вычисленный результат.

Для наглядности следует обратить внимание на такую цепочку выражений:

110=0,1=1* 10 в минус 1 ст.,

1100=0,01=1*10 в минус 2 степ.,

11000=0,0001=1*10 в минус 3 ст.,

110000=0,00001=1*10 в минус 4 степeни.

Благодаря данным примерам можно четко просмотреть возможность моментально вычислить 10 в любой минусовой степени. Для этой цели достаточно банально сдвигать десятичную составляющую:

  • 10 в -1 степeни — перед единицей 1 ноль;
  • в -3 — три нуля перед единицей;
  • в -9 — это 9 нулей и проч.

Так же легко понять по данной схеме, сколько будет составлять 10 в минус 5 ст. —

Как возвести число в натуральную степeнь

Вспоминая определение, учитываем, что натуральное число a в ст. n равняется произведению из n множителей, при этом каждый из них равняется a. Проиллюстрируем: (а*а*…а)n, где n — это количество чисел, которые умножаются. Соответственно, чтобы a возвести в n, необходимо рассчитать произведение следующего вида: а*а*…а разделить на n раз.

Отсюда становится очевидно, что возведение в натуральную ст. опирается на умение осуществлять умножение (этот материал освещен в разделе про умножение действительных чисел). Давайте рассмотрим задачу:

Возведите -2 в 4-ю ст.

Мы имеем дело с натуральным показателем. Соответственно, ход решения будет следующим: (-2) в cт. 4 = (-2)*(-2)*(-2)*(-2). Теперь осталось только осуществить умножение целых численностей:(-2)*(-2)*(-2)*(-2). Получаем 16.

Ответ на задачу:

Пример:

Вычислите значение: три целых две седьмых в квадрате.

Данный пример равняется следующему произведению: три целых две седьмых умножить на три целых две седьмых. Припомнив, как осуществляется умножение смешанных чисел, завершаем возведение:

  • 3 целых 2 седьмых умножить на самих себя;
  • равно 23 седьмых умножить на 23 седьмых;
  • равно 529 сорок девятых;
  • сокращаем и получаем 10 тридцать девять сорок девятых.

Возведение в иррациональную стeпeнь

Касаемо вопроса возведения в иррациональный показатель, следует отметить что расчеты начинают проводить после завершения предварительного округления основы степени до какого-либо разряда, который позволил бы получить величину с заданной точностью. К примеру, нам необходимо возвести число П (пи) в квадрат.

Начинаем с того, что округляем П до сотых и получаем:

П в квадрате = (3,14)2=9,8596. Однако если сократить П до десятитысячных, получим П=3,14159. Тогда возведение в квадрат получает совсем другое чиcло: 9,8695877281.

Здесь следует отметить, что во многих задачах нет надобности возводить иррациональные числа в cтeпeнь. Как правило, ответ вписывается или в виде, собственно, степени, к примеру, корень из 6 в степени 3, либо, если позволит выражение, проводится его преобразование: корень из 5 в 7 cтепeни = 125 корень из 5.

Как возвести чиcло в целую степень

Эту алгебраическую манипуляцию уместно принимать во внимание для следующих случаев:

  • для целых чисел;
  • для нулевого показателя;
  • для целого положительного показателя.

Поскольку практически все целые положительные числа совпадают с массой чисел натуральных, то постановка в положительную целую степень — это тот же процесс, что и постановка в ст. натуральную. Данный процесс мы описали в предшествующем пункте.

Теперь поговорим о вычислении ст. нулевой. Мы уже выяснили выше, что нулевую степень числа a можно определить для любого отличного от нуля a (действительного), при этом a в ст. 0 будет равно 1.

Соответственно, возведение какого угодно действительного числа в нулевую ст. будет давать единицу.

К примеру, 10 в ст.0=1, (-3,65)0=1, а 0 в ст. 0 нельзя определить.

Для того чтобы завершить возведение в целую степень, остается определиться с вариантами целых отрицательных значений. Мы помним, что ст. от a с целым показателем -z будет определяться как дробь. В знаменателе дроби располагается ст. с целым положительным значением, значение которой мы уже научились находить. Теперь остается лишь рассмотреть пример возведения.

Пример:

Вычислить значение числа 2 в кубе с целым отрицательным показателем.

Согласно определению стeпeни с отрицательным показателем обозначаем: два в минус 3 ст. равняется один к двум в третьей cтепeни.

Знаменатель рассчитывается просто: два в кубе;

Ответ: два в минус 3-й ст. = одна восьмая.

Видео

Из этого видео вы узнаете, что делать, если степень с отрицательным показателем.

Читайте также:  Вставить сим карту в смарт часы

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *