0

Вблизи точек лагранжа космический аппарат

Проводились ли эксперименты по размещению космических аппаратов в точках Лагранжа системы Земля-Луна?

Несмотря на то, что о так называемых точках либрации, существующих в космосе, и об их удивительных свойствах человечеству известно достаточно давно, использовать их в практических целях начали лишь на 22-й год космической эры. Но вначале вкратце расскажем о самих чудо-точках.

Впервые теоретически они были обнаружены Лагранжем (чье имя теперь и носят), как следствие решения так называемой задачи трех тел. Ученому удалось определить, где в пространстве могут находиться точки, в которых равнодействующая всех внешних сил обращается в ноль.

Точки делятся на устойчивые и неустойчивые. Устойчивые принято обозначать L4 и L5. Они располагаются в одной плоскости с основными двумя небесными телами (в данном случае — Землей и Луной), образуя с ними два равносторонних треугольника, за что их часто еще называют треугольными. В треугольных точках космический аппарат может находиться сколь угодно долго. Если же даже он отклонится в сторону, действующие силы все равно вернут его к положению равновесия. Космический аппарат словно попадает в гравитационную воронку, как бильярдный шар в лузу.

Однако, как мы сказали, существуют еще и неустойчивые точки либрации. В них космический аппарат, наоборот, находится словно на горе, являясь устойчивым лишь на самой ее вершине. Любое внешнее воздействие отклоняет его в сторону. Выйти в неустойчивую точку Лагранжа чрезвычайно сложно — для этого требуется сверхточная навигация. Поэтому аппарату приходится двигаться лишь вблизи самой точки по так называемой "гало-орбите", время от времени расходуя для ее поддержания топливо, правда, совсем немного.

В системе Земля-Луна неустойчивых точек три. Часто их еще называют прямолинейными, так как они расположены на одной линии. Одна из них (L1) находится между Землей и Луной, в 58 тыс. км от последней. Вторая (L2) — расположена так, что ее никогда не видно с Земли — она прячется за Луной в 65 тыс. км от нее. Последняя же точка (L3), наоборот, никогда не видна с Луны, так как ее загораживает Земля, от которой до нее примерно 380 тыс. км.

Хотя находиться в устойчивых точках и выгоднее (не требуется расходовать горючее), космические аппараты все же пока познакомились лишь с неустойчивыми, вернее, только с одной из них, да и то относящейся к системе Солнце-Земля. Она находится внутри этой системы, в 1.5 млн. км от нашей планеты и так же как точка между Землей и Луной имеет обозначение L1. При взгляде с Земли она проецируется прямо на Солнце и может служить идеальным пунктом для слежения за ним.

Этой возможностью впервые воспользовался американский аппарат ISEE-3, запущенный 12 августа 1978 года. С ноября 1978 по июнь 1982 года он находился на "гало-орбите" вокруг точки Li, изучая характеристики солнечного ветра. По окончания этого срока именно ему, но уже переименованному в ICE, довелось стать первым в истории исследователем кометы. Для этого аппарат покинул точку либрации и, совершив несколько гравитационных маневров у Луны, в 1985 году осуществил пролет вблизи кометы Джакобини-Циннера. На следующий год он же исследовал комету Галлея, правда, только на дальних подступах.

Следующим посетителем точки L1 системы Солнце-Земля стала европейская солнечная обсерватория SOHO, запущенная 2 декабря 1995 года и, к сожалению, недавно потерянная из-за ошибки управления. За время ее работы было получено не мало важной научной информации и сделано множество интересных открытий.

Наконец, последним на сегодняшний день аппаратом, выведенным в окрестности L1, стал американский аппарат АСЕ, предназначенный для изучения космических лучей и звездного ветра. Он стартовал с Земли 25 августа прошлого года и в настоящее время успешно проводит свои исследования.

А что же дальше? Существуют ли новые проекты, связанные с точками либрации? Безусловно, существуют. Так, в США принято предложение вице-президента А. Гора о новом запуске в направлении точки L1 системы Солнце-Земля научно-образовательного аппарата "Триана", уже прозванного "Камерой Гора".

В отличие от своих предшественников он будет следить не за Солнцем, а за Землей. Наша планета из этой точки видна всегда в полной фазе и поэтому очень удобна для наблюдений. Ожидается, что картинки, полученные "Камерой Гора", будут практически в реальном времени поступать в сеть Интернет, и к ним будет открыт доступ для всех желающих.

Существует и российский "либрационный" проект. Это аппарат "Реликт-2", предназначенный для сбора информации о реликтовом излучении. Если для этого проекта найдется финансирование, то его ждет точка либрации L2 в системе Земля-Луна, то есть та, что спрятана за Луной.

Место отсутствия гравитации, или, как называют это явление астрономы, точки Лагранжа (по имени механика, астронома и математика из Франции эпохи Просвещения – Joseph Louis Lagrange), обозначаемые кратко L1 и далее до L5, – это не просто точки. Это громадные пространства космоса – в многие миллионы километров, где не работают законы гравитации. А это значит, что любой случайно попавший туда объект выбраться обратно не сможет. Гигантские космические области, обозначаемые как точки Лагранжа, где невозможно никакое движение, захватят его и никогда не выпустят. А если выпустят, то очень нескоро.

Математик

В 1736 году во французском Турине родился знаменитый итальянец, который, наравне с Эйлером, стал крупнейшим математиком восемнадцатого века. Особую славу снискало его исключительное мастерство обобщения и синтеза разнообразного научного материала. Жозеф Луи Лагранж написал трактат по аналитической механике, который сразу стал классикой математической науки, поскольку в нём устанавливались многие фундаментальные математические принципы, в том числе принцип возможных перемещений. Именно Лагранж окончательно математизировал механику.

Также он внёс огромнейший вклад в теорию чисел, математический анализ, численные методы, теорию вероятностей. Именно он создал вариационное исчисление. Однако вклад его в астрономию ничуть не меньше. Его открытие – точки Лагранжа – несколько веков будоражило все околонаучные умы, и это происходит до сих пор. Можно себе представить, сколько всего интересного накопилось в этих космических пространствах за четыре с половиной миллиарда лет!

Изучение

Не только пылевые облака, астероиды и скрытые планеты могут находиться там. Многие подозревают, что именно в этих недосягаемых безгравитационных пространствах спрятались пресловутые "зелёные человечки" с других планет и наблюдают из своих замечательных "тарелочек", как движется технический прогресс на Земле, приближая человечество к полной его деградации.

В эти прошедшие столетия такого плана научные спекуляции не прекращались, но скоро им будет положен конец. Человечество вплотную подошло к тому, чтобы раскрыть, наконец, эту тайну. Два космических аппарата, занимающиеся изучением Солнца, переключились на исследования другого плана. И они вот-вот достигнут этих загадочных пространств, обозначаемых L4 и L5, и уже на месте выяснят, что же скрывают в себе точки Лагранжа.

Миссия

Даже если эти посланцы Земли и не обнаружат там инопланетные корабли, то всё равно многие учёные будут просто осчастливлены обнаружением в этих точках каких-либо космических скальных обломков невероятного возраста. А там наверняка скрыта изумительная популяция самых разнообразных объектов. Астрономы будут разыскивать небесные тела, используя специальный инструментарий, который припасён на борту космических зондов.

Конечно, всё это только предположения, и, возможно, никаких небесных тел там обнаружено не будет. Хотя Жозеф Луи Лагранж был уверен, что найдётся многое. Эти будущие находки могли бы предоставить недостающие сведения о том, как была сформирована Солнечная система, ромочь понять многие колоссальные взаимодействия, сформировавшие в том числе и Луну. Возможно, эти знания предостерегут землян от будущих столкновений космических тел с нашей планетой.

Суть учения

Точки Лагранжа в космосе были открыты в 1772 году, когда математик вычислил такое явление: Земля, как уже было известно, имеет гравитационное поле, и оно обязательно должно нейтрализовать притяжение Солнца именно в указанных точках пространства. И это единственные области, где объект действительно должен стать невесомым. Пять точек Лагранжа исключительно интересны в полном составе. Однако L4 и L5 интригуют более всех. Это единственно стабильные области. Например, точки Лагранжа L2 и L1 тоже летящий астероид задержат, но через некоторое время его отпускают в дальнейший полёт, а вот если объект попал в пространство L4 или L5, он может попрощаться с остальным космосом даже навсегда.

Читайте также:  Выбор уникальных значений из столбца excel

От Земли это недалеко, всего каких-то сто пятьдесят миллионов километров, и находятся эти точки прямо на плоскости орбиты, но вырваться, скорее всего, не получится. Это точки Лагранжа Земли: L4 в шестидесяти градусах впереди нашей планеты, а L5 под этим же углом позади неё, и все вместе мы вращаемся вокруг Солнца. Наверное, они охраняют Землю от падения на неё астероидов и других космических тел, лишая их собственного движения в своём безгравитационном пространстве. Самое интересное то, что вокруг других планет наблюдается та же картина, и наличие таких областей уже обнаружено.

Ловушки

Макс Вольф в 1906 году обнаружил астероид, который назвал Ахиллесом. Он находился между Юпитером и Марсом, за основным поясом астероидов. Исследовав данные, учёный понял, что Ахиллес попал в L4 Юпитера как в ловушку. После этого открытия поднялась волна поисков подобных примеров. Все находки в таких точках были названы именами героев Троянской войны. В данный момент нашли чуть менее тысячи астероидов, которых уловили в свои антигравитационные сети юпитерианские точки Лагранжа. Земля, Луна – вот что более всего интересовало учёных.

"Троянские" астероиды около других планет обнаруживаются с трудом. У Сатурна не обнаружены, у Нептуна – только один. А вот Земля тщательно скрывает свои космические кладовые, и что она там припасла, пока не исследовано. Ждём информацию от пустившихся на поиски зондов – что обнаружат они из того, что скрывают от нас точки Лагранжа?

Земля

Солнце слишком близко находится от L4 и L5, именно поэтому они настолько труднодоступны для наблюдения с Земли. Ночью область L5 почти у горизонта и быстро уходит, а L4, наоборот, скрывается в рассветных лучах. К тому же обследовать нужно огромные области, большие, чем Луна в самой полной своей ипостаси. Однако поиски всё-таки идут. В 90-х годах для этих исследований использовался телескоп, находящийся на Гавайях. Интересных фактов обнаружено не было, а потому постепенно исследователи остыли к этой загадке.

Совсем недавно был запущен автоматический поиск, чтобы исследовать астероиды, находящиеся около Земли, особо уделяющий внимание космическим участкам в районах точек Лагранжа. Однако обнаружить не удалось пока ничего. Особая надежда учёных – на зонды КА STEREO, которые могут несколько прояснить ситуацию. Напомним, что они не к поиску астероидов приспособлены, а к изучению солнечных бурь. Однако запущены они были в 2006 году чётко по орбите – один впереди, другой позади Земли, и потому будут иметь возможность наблюдать не только солнечную активность. Для этого при подходе к зонам L4 и L5 наши летательные аппараты будут перенастроены на более медленный пролёт, который не позволит им попасться в гравитационную ловушку.

Откуда взялась Луна?

Почему у нашей Земли такой массивный спутник, откуда он появился – эти вопросы волновали человечество буквально всегда. Сегодня многие учёные уверены, что она была сформирована из разнообразного космического мусора, обломков космического объекта величиной с планету Марс, который врезался в Землю четыре миллиарда лет назад. Как случилось, что после такого столкновения Земля ещё существует? Ведь должно было быть всё наоборот: Земля вдребезги и никакой Луны. А тут огромное космическое тело само распалось на куски от удара и образовало из обломков нашу любимую спутницу поэтов, как так?

Только одно объяснение. Этот космический объект должен быть сформирован где-то поблизости, чтобы не успеть разогнаться в полёте. Эту гипотезу подтверждает и обнаружение в лунном грунте ровно такое же количество изотопов кислорода, как и на Земле. На Марсе другое соотношение. Но как могло тут, буквально рядом, незаметно сформироваться такое огромное небесное тело и не столкнуться с Землёй гораздо раньше? А вот если оно в одной из точек Лагранжа формировалось – это всё объясняет. Формирование близко к Земле – потому и изотопов кислорода одинаковое количество. На одной и той же орбите могла быть и скорость близкая к одинаковой. И если зонды, летящие к точкам Лагранжа, обнаружат остатки этого космического объекта, теория, можно считать, доказана.

Угроза

Некоторыми астрономами высказывается предположение, что в таких необъятных просторах, как точки Лагранжа, вполне может оказаться тело размерами в планету, ведь вещество, необходимое для его формирования, собиралось там четыре с половиной миллиарда лет. Планеты и тогда составлялись из космической пыли и газа, а L4 и L5 были и остаются превосходными аккумуляторами для этой цели. Ну, может, и не планета, однако угрожающих размеров астероид там скрываться вполне может.

А ведь это замедленного действия бомба, спрятанная от посторонних глаз. Ближайшие планеты, особенно Венера, могут оказать такое гравитационное влияние, которое постепенно оттянет эту махину из точки Лагранжа и направит его прямёхонько на Землю. И если там такое космическое тело зонды обнаружат, придётся его взорвать, а обломки взять на изучение.

Задача трех тел

Солнечная система имеет огромное количество эффектов, природным образом связанных с движением планет, Луны, Земли. Таким же эффектом являются и точки Лагранжа. Как с ними будет взаимодействовать космический аппарат? Вот Земля, а вокруг неё летает Луна по круговой орбите, а больше ничего в природе как бы и нет. Это поставлена ограниченная задача трех тел, где третьим будет рассматриваемый нами космический аппарат и его движение. Если он находится на той линии, которая соединяет Луну и Землю, то прочувствует два гравитационных ускорения – притяжение Луны, притяжение Земли, плюс добавится к этим ускорениям третье – центростремительное, потому что и сама эта линия постоянно вращается.

На орбите

Конечно же, не может не существовать точка, где все эти ускорения пересекутся, обнулятся. Это будет точка равновесия, иначе – точка Лагранжа (или либрационная точка). Точек таких пять. Три первые соединяют Луну и Землю, это коллинеарные точки Лагранжа. Помещённый в любую из этих точек космический аппарат там и будет висеть, а если слегка отклонится, то в окрестностях найдёт свою собственную орбиту.

Причём она будет неминуемо меняться, потому что Луна вокруг Земли ходит не по кругу, а орбита её слегка вытянута. И Солнце влияет, разумеется. Но этот способ имеет будущее, потому что корректировать орбиту аппарата на территории, где расположены точки Лагранжа, малозатратно. Здесь можно использовать двигатели малой тяги. Окрестности таких точек удобно использовать для даже и пилотируемых космических полётов.

Система Земля-Солнце

Здесь тоже имеются пять точек либрации, и космические исследования ставят себе уже совершенно другие задачи, чем в освоении окололунных. Первые полёты осуществлялись с 1978 года и реализоваться успели несколько интересных миссий. Главная цель – наблюдение за солнечной активностью и солнечным ветром. Это стало более возможным при использовании точки Лагранжа L1. L2 интересна для астрофизиков, потому что аппарат из окрестностей этой точки может использовать телескоп, экранированный от солнечного излучения, – ведь он постоянно направлен в другую сторону от него. Астрофизические наблюдения можно проводить с наиболее чистыми расчётами.

Проектами, связанными с точками Лагранжа, "Луна-Земля", в нашей стране сейчас практически не занимаются, отдав эту тему европейским и американским учёным. А солнечными точками – занимаются, накопив уже огромный опыт. Однако большие программы закончились вместе с Советским Союзом.

Точки Лагранжа и эквипотенциальные поверхности системы двух тел (с учётом центробежного потенциала)

Точки Лагранжа, точки либрации ( librātiō — раскачивание) или L-точки — точки в системе из двух массивных тел, в которых третье тело с пренебрежимо малой массой, не испытывающее воздействие никаких других сил, кроме гравитационных, со стороны двух первых тел, может оставаться неподвижным относительно этих тел.

Читайте также:  Дрель шуруповерт электрическая отзывы

Более точно точки Лагранжа представляют собой частный случай при решении так называемой ограниченной задачи трёх тел — когда орбиты всех тел являются круговыми и масса одного из них намного меньше массы любого из двух других. В этом случае можно считать, что два массивных тела обращаются вокруг их общего центра масс с постоянной угловой скоростью. В пространстве вокруг них существуют пять точек, в которых третье тело с пренебрежимо малой массой может оставаться неподвижным во вращающейся системе отсчёта, связанной с массивными телами. В этих точках гравитационные силы, действующие на малое тело, уравновешиваются центробежной силой.

Точки Лагранжа получили своё название в честь математика Жозефа Луи Лагранжа, который первым в 1772 году привёл решение математической задачи, из которого следовало существование этих особых точек.

Расположение точек Лагранжа

Схема пяти лагранжевых точек в системе двух тел, когда одно тело намного массивнее другого (Солнце и Земля). В такой системе точки L3, L4, L5 показаны на самой орбите, хотя фактически они будут находиться немного за ней

Все точки Лагранжа лежат в плоскости орбит массивных тел и обозначаются заглавной латинской буквой L с числовым индексом от 1 до 5. Первые три точки расположены на линии, проходящей через оба массивных тела. Эти точки Лагранжа называются коллинеарными и обозначаются L1, L2 и L3. Точки L4 и L5 называются треугольными или троянскими.

L1 находится между двумя телами системы, ближе к менее массивному телу, L2 — снаружи, за менее массивным телом и L3 — за более массивным. Расстояния от центра масс системы до этих точек в первом приближении по α рассчитываются с помощью следующих формул:

,

R — расстояние между телами, M1 — масса более массивного тела, M2 — масса второго тела.

Точка L1 лежит на прямой, соединяющей два тела с массами M1 и M2 (M1 > M2), и находится между ними, вблизи второго тела. Её наличие обусловлено тем, что гравитация тела M2 частично компенсирует гравитацию тела M1. При этом чем больше M2, тем дальше от него будет располагаться эта точка.

Пример: Объекты, которые движутся вокруг Солнца ближе, чем Земля, как правило, имеют меньшие орбитальные периоды, чем у Земли, если они не входят в зону влияния земного притяжения. Если объект находится непосредственно между Землёй и Солнцем, то действие земной силы тяжести отчасти компенсирует влияние гравитации Солнца, за счёт этого происходит увеличение орбитального периода объекта. Причём чем ближе к Земле находится объект, тем сильнее этот эффект. И наконец, на определённом приближении к планете — в точке L1 — действие земной силы тяжести уравновешивает влияние солнечной гравитации настолько, что период обращения объекта вокруг Солнца становится равным периоду обращения Земли. Для нашей планеты расстояние до точки L1 составляет около 1,5 млн км. Притяжение Солнца здесь (118 мкм/с²) на 2 % сильнее, чем на орбите Земли (116 мкм/с²), тогда как снижение требуемой центростремительной силы вдвое меньше (59 мкм/с²). Сумма этих двух эффектов уравновешивается притяжением Земли, которое составляет здесь также 177 мкм/с². Использование

В системе Солнце—Земля точка L1 может быть идеальным местом для размещения космической обсерватории для наблюдения Солнца, которое в этом месте никогда не перекрывается ни Землёй, ни Луной. Первым космическим аппаратом, работавшим вблизи этой точки, был запущенный в августе 1978 года аппарат ISEE-3 . Аппарат вышел на периодическую гало-орбиту вокруг этой точки 20 ноября 1978 года и был сведён с этой орбиты 10 июня 1982 года (для исполнения новых задач). На такой же орбите с мая 1996 года работает аппарат SOHO. Аппараты ACE, WIND и DSCOVR находятся на квази-периодических орбитах Лиссажу́ близ этой же точки, соответственно, с 12 декабря 1997, 16 ноября 2001 и 8 июня 2015 года.

Лунная точка L1 (в системе Земля — Луна) может стать идеальным местом для строительства космической пилотируемой орбитальной станции, которая, располагаясь на «полпути» между Землёй и Луной, позволила бы легко добраться до Луны с минимальными затратами топлива и стать ключевым узлом грузового потока между Землёй и её спутником.

Точка L2 в системе Солнце — Земля, располагающаяся далеко за пределами орбиты Луны

Точка L2 лежит на прямой, соединяющей два тела с массами M1 и M2 (M1 > M2), и находится за телом с меньшей массой. Точки L1 и L2 располагаются на одной линии и в пределе M1 ≫ M2 симметричны относительно M2. В точке L2гравитационные силы, действующие на тело, компенсируют действие центробежных сил во вращающейся системе отсчёта.

Пример: у объектов, расположенных за орбитой Земли, орбитальный период почти всегда больше, чем у Земли. Но дополнительное влияние на объект силы тяжести Земли, помимо действия солнечной гравитации, приводит к увеличению скорости вращения и уменьшению времени оборота вокруг Солнца, в результате в точке L2орбитальный период объекта становится равным орбитальному периоду Земли.

Точка L2 в системе Солнце — Земля является идеальным местом для строительства орбитальных космических обсерваторий и телескопов. Поскольку объект в точке L2 способен длительное время сохранять свою ориентацию относительно Солнца и Земли, производить его экранирование и калибровку становится гораздо проще. Однако эта точка расположена немного дальше земной тени (в области полутени), так что солнечная радиация блокируется не полностью. В этой точке уже находятся аппараты американского и европейского космических агентств — WMAP, «Планк», «Гершель» и “Gaia”, а в 2018 должен присоединиться «Джеймс Уэбб». Точка L2 в системе Земля—Луна может быть использована для обеспечения спутниковой связи с объектами на обратной стороне Луны, а также быть удобным местом для размещения заправочной станции для обеспечения грузопотока между Землёй и Луной .

Если M2 много меньше по массе, чем M1, то точки L1 и L2 находятся на примерно одинаковом расстоянии r от тела M2, равном радиусу сферы Хилла :

где R — расстояние между компонентами системы.

Это расстояние можно описать как радиус круговой орбиты вокруг M2, для которой период обращения в отсутствие M1 в раз меньше, чем период обращения M2 вокруг M1.

Примеры

  • В системе Солнце — Земля: 1 500 000 км от Земли
  • Земля — Луна: 61 500 км от Луны

Три из пяти точек Лагранжа расположены на одной оси, соединяющей два тела

Точка L3 лежит на прямой, соединяющей два тела с массами M1 и M2 (M1 > M2), и находится за телом с большей массой. Так же, как для точки L2, в этой точке гравитационные силы компенсируют действие центробежных сил.

Пример: Точка L3 в системе Солнце — Земля находится за Солнцем, на противоположной стороне земной орбиты. Однако, несмотря на свою небольшую гравитацию (по сравнению с гравитацией Солнца), Земля всё же оказывает на него небольшое влияние, поэтому точка L3 находится не на самой орбите Земли, а чуть дальше от Солнца, чем Земля, так как вращение происходит не вокруг Солнца, а вокруг барицентра). В результате в этой точке L3 достигается такое сочетание гравитации Солнца и Земли, что объекты, находящиеся в этой точке, движутся с таким же орбитальным периодом, как и наша планета.

До начала космической эры среди писателей-фантастов была очень популярна идея о существовании на противоположной стороне земной орбиты в точке L3 другой аналогичной ей планеты, называемой «Противоземлёй», которая из-за своего расположения была недоступна для прямых наблюдений. Однако на самом деле из-за гравитационного влияния других планет точка L3 в системе Солнце — Земля является крайне неустойчивой. Так, во время гелиоцентрических соединений Земли и Венеры по разные стороны Солнца, которые случаются каждые 20 месяцев, Венера находится всего в 0,3 а. е. от точки L3 и таким образом оказывает очень серьёзное влияние на её расположение относительно земной орбиты. Кроме того, из-за несбалансированности центра тяжести системы Солнце — Юпитер относительно Земли и эллиптичности земной орбиты, так называемая «Противоземля» всё равно время от времени была бы доступна для наблюдений и обязательно была бы замечена. Ещё одним эффектом, выдающим её существование, была бы её собственная гравитация: влияние тела размером уже порядка 150 км и более на орбиты других планет было бы заметно. С появлением возможности производить наблюдения с помощью космических аппаратов и зондов было достоверно показано, что в этой точке нет объектов размером более 100 м.

Читайте также:  Взлом вифи через андроид

Орбитальные космические аппараты и спутники, расположенные вблизи точки L3, могут постоянно следить за различными формами активности на поверхности Солнца, в частности, о появлении новых пятен или вспышек, и оперативно передавать информацию на Землю (например, в рамках системы раннего предупреждения о космической погоде NOAA Space Weather Prediction Center ). Кроме того, информация с таких спутников может быть использована для обеспечения безопасности дальних пилотируемых полётов, например к Марсу или астероидам. В 2010 году были изучены несколько вариантов запуска подобного спутника .

L4 и L5

Гравитационное ускорение в точке L4

Если на основе линии, соединяющей оба тела системы, построить два равносторонних треугольника, две вершины которых соответствуют центрам тел M1 и M2, то точки L4 и L5 будут соответствовать положению третьих вершин этих треугольников, расположенных в плоскости орбиты второго тела в 60 градусах впереди и позади него.

Наличие этих точек и их высокая стабильность обусловливается тем, что, поскольку расстояния до двух тел в этих точках одинаковы, то силы притяжения со стороны двух массивных тел соотносятся в той же пропорции, что их массы, и таким образом результирующая сила направлена на центр масс системы; кроме того, геометрия треугольника сил подтверждает, что результирующее ускорение связано с расстоянием до центра масс той же пропорцией, что и для двух массивных тел. Так как центр масс является одновременно и центром вращения системы, результирующая сила точно соответствует той, которая нужна для удержания тела в точке Лагранжа в орбитальном равновесии с остальной системой. (На самом деле, масса третьего тела и не должна быть пренебрежимо малой). Данная треугольная конфигурация была обнаружена Лагранжем во время работы над задачей трёх тел. Точки L4 и L5 называют треугольными (в отличие от коллинеарных).

Также точки называют троянскими: это название происходит от троянских астероидов Юпитера, которые являются самым ярким примером проявления этих точек. Они были названы в честь героев Троянской войны из «Илиады» Гомера, причём астероиды в точке L4 получают имена греков, а в точке L5 — защитников Трои; поэтому их теперь так и называют «греками» (или «ахейцами») и «троянцами».

Расстояния от центра масс системы до этих точек в координатной системе с центром координат в центре масс системы рассчитываются по следующим формулам:

, R — расстояние между телами, M1 — масса более массивного тела, M2 — масса второго тела.

Примеры

  • В 2010 году в системе Солнце — Земля в троянской точке L4 обнаружен астероид. В L5 пока не обнаружено троянских астероидов, но там наблюдается довольно большое скопление межпланетной пыли.
  • По некоторым наблюдениям, в точках L4 и L5 системы Земля — Луна находятся очень разрежённые скопления межпланетной пыли — облака Кордылевского.
  • В системе Солнце — Юпитер в окрестностях точек L4 и L5 находятся так называемые троянские астероиды. По состоянию на 21 октября 2010 известно около четырёх с половиной тысяч астероидов в точках L4 и L5.
  • Троянские астероиды в точках L4 и L5 есть не только у Юпитера, но и у других планет-гигантов.
  • Другим интересным примером является спутник СатурнаТефия, в точках L4 и L5 которой находятся два небольших спутника — Телесто и Калипсо. Ещё одна пара спутников известна в системе Сатурн — Диона: Елена в точке L4 и Полидевк в точке L5. Тефия и Диона в сотни раз массивнее своих «подопечных», и гораздо легче Сатурна, что делает систему стабильной.
  • Один из сценариев модели ударного формирования Луны предполагает, что гипотетическая протопланета (планетезималь) Тейя, в результате столкновения которой с Землёй образовалась Луна, сформировалась в точке Лагранжа L4 или L5 системы Солнце — Земля.
  • Первоначально считалось, что в системе KOI-730 две из четырёх планет обращаются вокруг своего солнца по одной орбите. Вдоль общей орбиты эти два мира постоянно разделяют 60 градусов дистанции. Однако дальнейшие исследования показали, что данная система не содержит коорбитальных планет.

Равновесие в точках Лагранжа

Изображение двойной звезды Мира (омикрон Кита), сделанное космическим телескопом «Хаббл» в ультрафиолетовом диапазоне. На фотографии виден поток материи, направленный от основного компонента — красного гиганта — к компаньону — белому карлику. Массообмен осуществляется через окрестности точки L1

Тела, помещённые в коллинеарных точках Лагранжа, находятся в неустойчивом равновесии. Например, если объект в точке L1 слегка смещается вдоль прямой, соединяющей два массивных тела, сила, притягивающая его к тому телу, к которому оно приближается, увеличивается, а сила притяжения со стороны другого тела, наоборот, уменьшается. В результате объект будет всё больше удаляться от положения равновесия.

Такая особенность поведения тел в окрестностях точки L1 играет важную роль в тесных двойных звёздных системах. Полости Роша компонент таких систем соприкасаются в точке L1, поэтому, когда одна из звёзд-компаньонов в процессе эволюции заполняет свою полость Роша, вещество перетекает с одной звезды на другую именно через окрестности точки Лагранжа L1.

Несмотря на это, существуют стабильные замкнутые орбиты (во вращающейся системе координат) вокруг коллинеарных точек либрации, по крайней мере, в случае задачи трёх тел. Если на движение влияют и другие тела (как это происходит в Солнечной системе), вместо замкнутых орбит объект будет двигаться по квазипериодическим орбитам, имеющим форму фигур Лиссажу. Несмотря на неустойчивость такой орбиты, космический аппарат может оставаться на ней в течение длительного времени, затрачивая относительно небольшое количество топлива.

В отличие от коллинеарных точек либрации, в троянских точках обеспечивается устойчивое равновесие, если M1/M2 > 24,96 . При смещении объекта возникают силы Кориолиса, которые искривляют траекторию, и объект движется по устойчивой орбите вокруг точки либрации.

Практическое применение

Полости Роша для двойной звёздной системы (обозначены жёлтым)

Исследователи в области космонавтики давно уже обратили внимание на точки Лагранжа. Например, в точке L1 системы Земля — Солнце удобно разместить космическую солнечную обсерваторию — она никогда не будет попадать в тень Земли, а значит, наблюдения могут вестись непрерывно. Точка L2 подходит для космического телескопа — здесь Земля почти полностью заслоняет солнечный свет, да и сама не мешает наблюдениям, поскольку обращена к L2 неосвещенной стороной. Точка L1 системы Земля — Луна удобна для размещения ретрансляционной станции в период освоения Луны. Она будет находиться в зоне прямой видимости для большей части обращённого к Земле полушария Луны, а для связи с ней понадобятся передатчики в десятки раз менее мощные, чем для связи с Землёй.

В настоящее время несколько космических аппаратов, в первую очередь, астрофизических обсерваторий, размещены или планируются к размещению в различных точках Лагранжа Солнечной системы:

Точка L1 системы Земля—Солнце:

  • Космический аппарат WIND, предназначенный для исследования солнечного ветра (запущен в 1994 году).
  • SOHO ( Solar and Heliospheric Observatory , «Солнечная и гелиосферная обсерватория») (запущен в 1995 году).
  • Advanced Composition Explorer (запущен в 1997 году).

Точка L2 системы Земля—Солнце:

  • КА НАСА WMAP, изучающий реликтовое излучение (запущен в 2001 году).
  • Космические телескопы «Гершель» и «Планк», (запущены в 2009 году).
  • Европейский телескоп «Gaia» (запущен в 2013 году).
  • Космический телескоп «Джеймс Уэбб», идущий на смену телескопу «Хаббл». Запуск планируется на 2018 год.
  • В 2017 году НПО имени Лавочкина планирует разместить в точке L2 космическую обсерваторию Спектр-РГ.
  • В 2024 году ЕКА планирует также разместить в точке L2 космический телескоп «PLATO».

Другие точки Лагранжа:

  • в сентябре-октябре 2009 года два аппарата STEREO совершили транзит через точки L4 и L5.
  • JIMO ( Jupiter Icy Moons Orbiter ) — отменённый проект НАСА по исследованию спутников Юпитера, который должен был активно использовать систему точек Лагранжа для перехода от одного спутника к другому с минимальными затратами топлива. Этот манёвр получил название «лестница Лагранжа».

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *