0

Виды ядер операционных систем

Загрузчик операционной системы. Определение, функции, разновидности

Определение, функции и компоненты операционной системы

Операцио́нная систе́ма, сокр. ОС (англ. operating system, OS) — комплекс управляющих и обрабатывающих программ, которые, с одной стороны, выступают как интерфейс между устройствами вычислительной системы и прикладными программами, а с другой стороны — предназначены для управления устройствами, управления вычислительными процессами, эффективного распределения вычислительных ресурсов между вычислительными процессами и организации надёжных вычислений.

Функции операционных систем

Выполнение по запросу программ ;Загрузка программ в оперативную память и их выполнение.; Стандартизованный доступ к периферийным устройствам ;Управление оперативной памятью ;Управление доступом к данным на энергонезависимых носителях ;Обеспечение пользовательского интерфейса. ;Сохранение информации об ошибках системы.

Компоненты операционной системы

Загрузчик ; Ядро ;Командный процессор ;Драйверы устройств ;Интерфейс

Загрузчик операционной системы — системное программное обеспечение, обеспечивающее загрузку операционной системы непосредственно после включения компьютера.

•обеспечивает необходимые средства для диалога с пользователем компьютера

•приводит аппаратуру компьютера в состояние, необходимое для старта ядра операционной системы

•загружает ядро операционной системы в ОЗУ.

•формирует параметры, передаваемые ядру операционной системы

•передаёт управление ядру операционной системы.

NTLDR — загрузчик ядра Windows NT

Windows Boot Manager (bootmgr.exe, winload.exe) — загрузчик ядра Windows Vista

LILO (LInux LOader) — загрузчик, в основном применяемый для загрузки ядра Linux

GRUB (Grand Unified Bootloader) — применяется для загрузки ядра Linux и Hurd (StartUp Manager)

Компоненты операционной системы

Ядро — центральная часть операционной системы, управляющая выполнением процессов, ресурсами вычислительной системы и предоставляющая процессам

координированный доступ к этим ресурсам.

Типы архитектур ядер операционных

 Монолитное ядро (*NIX)

 Модульное ядро (MODERN *NIX)

 Гибридное ядро (XP, Vista, 7)

Монолитное ядро. >> Представляет богатый набор оборудования. Все компоненты монолитного ядра находятся в одном адресном пространстве. Эта схема ОС, когда все части ее ядра — это составные части одной программы. Монолитное ядро — самый старый способ организации ОС.

Достоинства: высокая скорость работы, простая разработка модулей.
Недостатки: Ошибка работы одного из компонентов ядра нарушает работу всей системы.

Модульное ядро. >> Это современная модификация монолитных ядер ОС, но в отличие от них модульное ядро не требует полной перекомпиляции ядра при изменения аппаратного обеспечения компьютера. Более того модульные ядра имеют механизм погрузки модулей ядра. Погрузка бывает статической- с перезагрузкой ОС, и динамической — без перезагрузки ОС.

Микроядро. >> Представляет только основные функции управления процессами и минимальный набор для работы с оборудованием. Классические микроядра дают очень небольшой набор системных вызовов.
Достоинства: устойчивость к сбоям и ошибкам оборудования и компонентов системы, высокая степень ядерной модульности, что упрощает добавление в ядро новых компонентов и процесс отладки ядра. Для отладки такого ядра можно использовать обычные средства. Архитектура микроядра увеличивает надежность системы.
Недостатки: Передача информации требует больших расходов и большого количества времени.
Экзоядро. Такое ядро ОС, которое предоставляет лишь функции взаимодействия процессов, безопасное выделение и распределение ресурсов. Доступ к устройствам на уровне контроллеров позволяет решать задачи, которые нехарактерны для универсальной ОС.

Наноядро. >> Такое ядро выполняет только единственную задачу- обработку аппаратных прерываний, образуемых устройствами ПК. После обработки наноядро посылает данные о результатах обработки далее идущему в цепи программному обеспечения при помощи той же системы прерываний.
Гибридное ядро. Модификация микроядер, позволяющая для ускорения работы впускать несущественные части в пространство ядра. На архитектуре гибкого ядра построены последние операционные системы от Windows, в том числе и Windows 7.

Все перечисленные подходы к построению ОС безусловно имеют как преимущества, так и недостатки. Поэтому в большинстве современных операционных системах используют различные комбинации подходов к построению. Обычно за основу берут один из подходов и дополняют в него элементы других подходов, стараясь свести к минимумы недостатки.

Дата добавления: 2015-04-23 ; Просмотров: 4222 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Виды ядер ОС

Как основной элемент ОС, ядро представляет собой наиболее низкий уровень абстракции для доступа приложений к ресурсам системы, необходимым для их работы. Как правило, ядро предоставляет такой доступ исполняемым процессам соответствующих приложений за счёт использования механизмов межпроцессного взаимодействия и обращения приложений к системным вызовам ОС. Описанная задача может различаться в зависимости от типа архитектуры ядра и способа её реализации.

Отличительной особенностью большинства операционных систем на сегодняшний день является большое монолитное ядро. Ядро операционной системы обеспечивает большинство ее возможностей, включая планирование, работу с файловой системой, сетевые функции, работу драйверов различных устройств, управление памятью и многие другие. Обычно монолитное ядро реализуется как единый процесс, все элементы которого используют одно и то же адресное пространство.Все части монолитного ядра работают в одном адресном пространстве. Это такая схема операционной системы, при которой все компоненты её ядра являются составными частями одной программы, используют общие структуры данных и взаимодействуют друг с другом путём непосредственного вызова процедур. Монолитное ядро — старейший способ организации операционных систем. Примером систем с монолитным ядром является большинство UNIX-систем.Достоинства: скорость работы, упрощённая разработка модулей.Недостатки: поскольку всё ядро работает в одном адресном пространстве, сбой в одном из компонентов может нарушить работоспособность всей системы.Примеры: традиционные ядра UNIX (такие как BSD), Linux; ядро MS-DOS, ядро KolibriOS.Некоторые старые монолитные ядра, в особенности систем класса UNIX/Linux, требовали перекомпиляции при любом изменении состава оборудования. Большинство современных ядер позволяют во время работы подгружать модули, выполняющие часть функций ядра. В этом случае компоненты операционной системы являются не самостоятельными модулями, а составными частями одной большой программы, называемой монолитным ядром (monolithickernel), которое представляет собой набор процедур, каждая из которых может вызвать каждую. Все процедуры работают в привилегированном режиме.[1; С. 112]

Читайте также:  Здравствуйте в этом случае мы постараемся

В архитектуре микроядра ядру отводится лишь несколько самых важныхфункций, в число которых входят работа с адресными пространствами, обеспечение взаимодействия между процессами (interprocesscommunication) и основное планирование. Работу других сервисов операционной системы обеспечивают процессы, которые иногда называют серверами. Эти процессы запускаются в пользовательском режиме и микроядро работает с ними так же, какс другими приложениями. Такой подход позволяет разделить задачу разработки операционной системы, на разработку ядра и разработку сервера. Серверы можно настраивать для требований конкретных приложений или среды. Выделение в структуре системы микроядра упрощает реализацию системы, обеспечивает ее гибкость, а также хорошо вписывается в распределенную среду. Фактически микроядро взаимодействует с локальным и удаленным сервером по одной той же схеме, что упрощает построение распределенных систем. Достоинства: устойчивость к сбоям оборудования, ошибкам в компонентах системы. Основное достоинство микроядерной архитектуры — высокая степень модульности ядра операционной системы. Это существенно упрощает добавление в него новых компонентов. В микроядерной операционной системе можно, не прерывая её работы, загружать и выгружать новые драйверы, файловые системы и т. д. Существенно упрощается процесс отладки компонентов ядра, так как новая версия драйвера может загружаться без перезапуска всей операционной системы. Компоненты ядра операционной системы ничем принципиально не отличаются от пользовательских программ, поэтому для их отладки можно применять обычные средства. Микроядерная архитектура повышает надежность системы, поскольку ошибка на уровне непривилегированной программы менее опасна, чем отказ на уровне режима ядра. Недостатки: передача данных между процессами требует накладных расходов.Примеры: Symbian OS; Windows CE; OpenVMS; Mach, используемый в GNU/Hurd и Mac OS X; QNX; AIX; Minix; ChorusOS; AmigaOS; MorphOS.

Модульное ядро — современная, усовершенствованная модификация архитектуры монолитных ядер операционных систем компьютеров.В отличие от «классических» монолитных ядер, считающихся ныне устаревшими, модульные ядра, как правило, не требуют полной перекомпиляции ядра при изменении состава аппаратного обеспечения компьютера. Вместо этого модульные ядра предоставляют тот или иной механизм подгрузки модулей ядра, поддерживающих то или иное аппаратное обеспечение (например, драйверов). При этом подгрузка модулей может быть как динамической (выполняемой «на лету», без перезагрузки ОС, в работающей системе), так и статической (выполняемой при перезагрузке ОС после переконфигурирования системы на загрузку тех или иных модулей).Все модули ядра работают в адресном пространстве ядра и могут пользоваться всеми функциями, предоставляемыми ядром. Поэтому модульные ядра продолжают оставаться монолитными.Модульные ядра удобнее для разработки, чем традиционные монолитные ядра, не поддерживающие динамическую загрузку модулей, так как от разработчика не требуется многократная полная перекомпиляция ядра при работе над какой-либо его подсистемой или драйвером. Выявление, локализация, отладка и устранение ошибок при тестировании также облегчаются.Модульные ядра предоставляют особый программный интерфейс (API) для связывания модулей с ядром, для обеспечения динамической подгрузки и выгрузки модулей. В свою очередь, не любая программа может быть сделана модулем ядра: на модули ядра накладываются определённые ограничения в части используемых функций (например, они не могут пользоваться функциями стандартной библиотеки С/С++ и должны использовать специальные аналоги, являющиеся функциями API ядра). Кроме того, модули ядра обязаны экспортировать определённые функции, нужные ядру для правильного подключения и распознавания модуля, для его корректной инициализации при загрузке и корректного завершения при выгрузке, для регистрации модуля в таблице модулей ядра и для обращения из ядра к сервисам, предоставляемым модулем.Не все части ядра могут быть сделаны модулями. Некоторые части ядра всегда обязаны присутствовать в оперативной памяти и должны быть жёстко «вшиты» в ядро. Также не все модули допускают динамическуюподгрузку (без перезагрузки ОС). Степень модульности ядер (количество и разнообразие кода, которое может быть вынесено в отдельные модули ядра и допускает динамическую подгрузку) различна в различных архитектурах модульных ядер. Ядро «Linux» в настоящее время имеет более модульную архитектуру, чем ядра *BSD (FreeBSD, NetBSD, OpenBSD).Общей тенденцией развития современных модульных архитектур является всё большая модуларизация кода (повышение степени модульности ядер), улучшение механизмов динамической подгрузки и выгрузки, уменьшение или устранение необходимости в ручной подгрузке модулей или в переконфигурации ядра при изменениях аппаратуры путём введения тех или иных механизмов автоматического определения оборудования и автоматической подгрузки нужных модулей, универсализация кода ядра и введение в ядро абстрактных механизмов, предназначенных для совместного использования многими модулями (примером может служить VFS — «виртуальная файловая система», совместно используемая многими модулями файловых систем в ядре Linux).

Экзоядро — ядро операционной системы компьютеров, предоставляющее лишь функции для взаимодействия между процессами и безопасного выделения и освобождения ресурсов.В традиционных операционных системах ядро предоставляет не только минимальный набор сервисов, обеспечивающих выполнение программ, но и большое количество высокоуровневых абстракций для использования разнородных ресурсов компьютера: оперативной памяти, жестких дисков, сетевых подключений. В отличие от них, ОС на основе экзоядра предоставляет лишь набор сервисов для взаимодействия между приложениями, а также необходимый минимум функций, связанных с защитой: выделение и высвобождение ресурсов, контроль прав доступа, и т. д. Экзоядро не занимается предоставлением абстракций для физических ресурсов — эти функции выносятся в библиотеку пользовательского уровня (так называемую libOS).Основная идея операционной системы на основе экзоядра состоит в том, что ядро должно выполнять лишь функции координатора для небольших процессов, связанных только одним ограничением — экзоядро должно иметь возможность гарантировать безопасное выделение и освобождение ресурсов оборудования. В отличие от ОС на основе микроядра, ОС, базирующиеся на экзоядре, обеспечиваютбольшую эффективность за счет отсутствия необходимости в переключении между процессами при каждом обращении к оборудованию.Архитектуры на основе экзоядер являются дальнейшим развитием и усовершенствованием микроядерных архитектур и одновременно ужесточают требования к минималистичности и простоте кода ядра.«LibOS» может обеспечивать произвольный набор абстракций, совместимый с той или иной уже существующей операционной системой, например,Linux или Windows.

Наноядро — архитектура ядра операционной системы компьютеров, в рамках которой крайне упрощённое и минималистичное ядро выполняет лишь одну задачу — обработку аппаратных прерываний, генерируемых устройствами компьютера. После обработки прерываний от аппаратуры наноядро, в свою очередь, посылает информацию о результатах обработки (например, полученные с клавиатуры символы) вышележащему программному обеспечению при помощи того же механизма прерываний. Также часто реализуют минимальную поддержку потоков: создание и переключение.В некотором смысле концепция наноядра близка к концепции HAL — HardwareAbstractionLayer, предоставляя вышележащему ПО удобные механизмы абстракции от конкретных устройств и способов обработки их прерываний.Наиболее часто в современных компьютерах наноядра используются для виртуализации аппаратного обеспечения реальных компьютеров или для реализации механизма гипервизора, с целью позволить нескольким или многим различным операционным системам работать одновременно и параллельно на одном и том же компьютере. Например, VMware ESX Server реализует собственное наноядро, не зависимое от ОС и устанавливаемое на «голое железо». Поверх этого наноядра работают пользовательские и административные утилиты VMware и сами операционные системы, виртуализируемые в ESX Server.Наноядра также могут использоваться для обеспечения переносимости (портабельности) операционных систем на разное аппаратное обеспечение или для обеспечения возможности запуска «старой» операционной системы на новом, несовместимом аппаратном обеспечении без её полного переписывания и портирования. Например, фирма AppleComputer использовала наноядро в версии Mac OS Classic для PowerPC для того, чтобы транслировать аппаратные прерывания, генерировавшиеся их компьютерами на базе процессоров PowerPC в форму, которая могла «пониматься» и распознаваться Mac OS для процессоров Motorola 680×0. Таким образом, наноядро эмулировало для Mac OS «старое» 680×0 железо. Альтернативой было бы полное переписывание и портирование кода Mac OS на PowerPC при переходе с 680×0 на них. Позднее, в эпоху Mac OS 8.6, наноядровиртуализировало предоставляемые PowerPC мультипроцессорные возможности и обеспечивало поддержку SMP в Mac OS. Другие удачные примеры использования наноядерных архитектур включают наноядроAdeos, работающее как модуль ядра для Linux и позволяющее выполнять одновременно с Linuxкакую-либо операционную систему реального времени.Наноядро может быть настолько маленьким и примитивным, что даже важнейшие устройства, находящиеся непосредственно на материнской плате или на плате контроллера встраиваемого устройства, такие, как таймер или программируемый контроллер прерываний, обслуживаются специальными драйверами устройств, а не непосредственно ядром. Такого рода сверхминималистичныенаноядра называют иногда пикоядрами.Термин «наноядро» иногда неформально используется для описания очень маленьких, упрощённых и лёгких микроядер, таких, как L4.

Читайте также:  Все фильмы про планету обезьян по порядку

Гибридное ядро (англ. Hybridkernel) — модифицированные микроядра, позволяющие для ускорения работы запускать «несущественные» части в пространстве ядра. Пример: ядра ОС Windows семейства NT.

Все рассмотренные подходы к построению операционных систем имеют свои достоинства и недостатки. В большинстве случаев современные операционные системы используют различные комбинации этих подходов. Так, например сейчас, ядро «Linux» представляет собой монолитную систему с отдельными элементами модульного ядра. При компиляции ядра можно разрешить динамическую загрузку и выгрузку очень многих компонентов ядра — так называемых модулей. В момент загрузки модуля его код загружается на уровне системы и связывается с остальной частью ядра. Внутри модуля могут использоваться любые экспортируемые ядром функции.Существуют варианты ОС GNU (Debian GNU/Hurd), в которых вместо монолитного ядра применяется ядро Mach (такое же, как в Hurd), а поверх него в пользовательском пространстве работают те же самые процессы, которые при использовании Linux были бы частью ядра. Другим примером смешанного подхода может служить возможность запуска операционной системы с монолитным ядром под управлением микроядра. Так устроены 4.4BSD и MkLinux, основанные на микроядре Mach. Микроядро обеспечивает управление виртуальной памятью и работу низкоуровневых драйверов. Все остальные функции, в том числе взаимодействие с прикладными программами, осуществляется монолитным ядром. Данный подход сформировался в результате попыток использовать преимущества микроядернойархитектуры, сохраняя по возможности хорошо отлаженный код монолитного ядра.Наиболее тесно элементы микроядернойархитектуры и элементы монолитного ядра переплетены в ядре Windows NT. Хотя Windows NT часто называют микроядерной операционной системой, это не совсем так. Микроядро NT слишком велико (более 1 Мбайт, кроме того, в ядре системы находится, например, ещё и модуль графического интерфейса), чтобы носить приставку «микро». Компоненты ядра Windows NT располагаются в вытесняемой памяти и взаимодействуют друг с другом путем передачи сообщений, как и положено в микроядерных операционных системах. В то же время все компоненты ядра работают в одном адресном пространстве и активно используют общие структуры данных, что свойственно операционным системам с монолитным ядром. Причина проста: чисто микроядерный дизайн коммерчески менее выгоден, поскольку менее эффективен (за счет накладных расходов на передачу сообщений там, где можно было обойтись вызовами функций). Таким образом, Windows NT можно с полным правом назвать гибридной операционной системой.Смешанное ядро, в принципе, должно объединять преимущества монолитного ядра и микроядра: казалось бы, микроядро и монолитное ядро — крайности, а смешанное — золотая середина. В них возможно добавлять драйвера устройств двумя способами: и внутрь ядра, и в пользовательское пространство. Но на практике концепция смешанного ядра часто подчёркивает не только достоинства, но и недостатки обоих типов ядер.Примеры: Windows NT,DragonFly BSD.[2; С. 448]

Ядро́ (англ. kernel ) — центральная часть операционной системы (ОС), обеспечивающая приложениям координированный доступ к ресурсам компьютера, таким как процессорное время, память, внешнее аппаратное обеспечение, внешнее устройство ввода и вывода информации. Также обычно ядро предоставляет сервисы файловой системы и сетевых протоколов.

Как основополагающий элемент ОС, ядро представляет собой наиболее низкий уровень абстракции для доступа приложений к ресурсам системы, необходимым для их работы. Как правило, ядро предоставляет такой доступ исполняемым процессам соответствующих приложений за счёт использования механизмов межпроцессного взаимодействия и обращения приложений к системным вызовам ОС.

Описанная задача может различаться в зависимости от типа архитектуры ядра и способа её реализации.

Содержание

Типы архитектур ядер операционных систем [ править | править код ]

Монолитное ядро [ править | править код ]

Монолитное ядро предоставляет богатый набор абстракций оборудования. Все части монолитного ядра работают в одном адресном пространстве. Это такая схема операционной системы, при которой все компоненты её ядра являются составными частями одной программы, используют общие структуры данных и взаимодействуют друг с другом путём непосредственного вызова процедур. Монолитное ядро — старейший способ организации операционных систем. Примером систем с монолитным ядром является большинство UNIX-систем.

  • Достоинства: Скорость работы, упрощённая разработка модулей.
  • Недостатки: Поскольку всё ядро работает в одном адресном пространстве, сбой в одном из компонентов может нарушить работоспособность всей системы.
Читайте также:  Где найти буфер обмена на компе

Примеры: Традиционные ядра UNIX (такие как BSD), Linux; ядро MS-DOS, ядро KolibriOS.

Некоторые старые монолитные ядра, в особенности систем класса UNIX/Linux, требовали перекомпиляции при любом изменении состава оборудования. Большинство современных ядер позволяют во время работы подгружать модули, выполняющие часть функций ядра. В этом случае компоненты операционной системы являются не самостоятельными модулями, а составными частями одной большой программы, называемой монолитным ядром (monolithic kernel), которое представляет собой набор процедур, каждая из которых может вызвать каждую. Все процедуры работают в привилегированном режиме.

Модульное ядро [ править | править код ]

Модульное ядро — современная, усовершенствованная модификация архитектуры монолитных ядер операционных систем.

В отличие от «классических» монолитных ядер, модульные ядра, как правило, не требуют полной перекомпиляции ядра при изменении состава аппаратного обеспечения компьютера. Вместо этого модульные ядра предоставляют тот или иной механизм подгрузки модулей ядра, поддерживающих то или иное аппаратное обеспечение (например, драйверов). При этом подгрузка модулей может быть как динамической (выполняемой «на лету», без перезагрузки ОС, в работающей системе), так и статической (выполняемой при перезагрузке ОС после переконфигурирования системы на загрузку тех или иных модулей).

Микроядро [ править | править код ]

Микроядро предоставляет только элементарные функции управления процессами и минимальный набор абстракций для работы с оборудованием. Бо́льшая часть работы осуществляется с помощью специальных пользовательских процессов, называемых сервисами. Решающим критерием «микроядерности» является размещение всех или почти всех драйверов и модулей в сервисных процессах, иногда с явной невозможностью загрузки любых модулей расширения в собственно микроядро, а также разработки таких расширений.

  • Достоинства: Устойчивость к сбоям оборудования, ошибкам в компонентах системы. Основное достоинство микроядерной архитектуры — высокая степень модульности ядра операционной системы. Это существенно упрощает добавление в него новых компонентов. В микроядерной операционной системе можно, не прерывая её работы, загружать и выгружать новые драйверы, файловые системы и т. д. Существенно упрощается процесс отладки компонентов ядра, так как новая версия драйвера может загружаться без перезапуска всей операционной системы. Компоненты ядра операционной системы ничем принципиально не отличаются от пользовательских программ, поэтому для их отладки можно применять обычные средства. Микроядерная архитектура повышает надежность системы, поскольку ошибка на уровне непривилегированной программы менее опасна, чем отказ на уровне режима ядра.
  • Недостатки: Передача данных между процессами требует накладных расходов.

Классические микроядра предоставляют лишь очень небольшой набор низкоуровневых примитивов, или системных вызовов, реализующих базовые сервисы операционной системы.

  • Сервисные процессы (в принятой в семействе UNIX терминологии — «демоны») активно используются в самых различных ОС для задач типа запуска программ по расписанию (UNIX и Windows NT), ведения журналов событий (UNIX и Windows NT), централизованной проверки паролей и хранения пароля текущего интерактивного пользователя в специально ограниченной области памяти (Windows NT). Тем не менее, не следует считать ОС микроядерными только из-за использований такой архитектуры.

Экзоядро [ править | править код ]

Экзоядро — ядро операционной системы, предоставляющее лишь функции для взаимодействия между процессами, безопасного выделения и освобождения ресурсов. Предполагается, что API для прикладных программ будут предоставляться внешними по отношению к ядру библиотеками (откуда и название архитектуры).

Возможность доступа к устройствам на уровне контроллеров позволит эффективней решать некоторые задачи, которые плохо вписываются в рамки универсальной ОС, например, реализация СУБД будет иметь доступ к диску на уровне секторов диска, а не файлов и кластеров, что положительно скажется на быстродействии.

Наноядро [ править | править код ]

Наноядро — архитектура ядра операционной системы, в рамках которой крайне упрощённое и минималистичное ядро выполняет лишь одну задачу — обработку аппаратных прерываний, генерируемых устройствами компьютера. После обработки прерываний от аппаратуры наноядро, в свою очередь, посылает информацию о результатах обработки (например, полученные с клавиатуры символы) вышележащему программному обеспечению при помощи того же механизма прерываний. Примером является KeyKOS — самая первая ОС на наноядре. Первая версия вышла ещё в 1983 году.

Гибридное ядро [ править | править код ]

Гибридные ядра — это модифицированные микроядра, позволяющие для ускорения работы запускать «несущественные» части в пространстве ядра. Пример: ядра ОС Windows семейства NT.

Комбинация разных подходов [ править | править код ]

Все рассмотренные подходы к построению операционных систем имеют свои достоинства и недостатки. В большинстве случаев современные операционные системы используют различные комбинации этих подходов. Так, например, сейчас ядро «Linux» представляет собой монолитную систему с отдельными элементами модульного ядра [1] . При компиляции ядра можно разрешить динамическую загрузку и выгрузку очень многих компонентов ядра — так называемых модулей. В момент загрузки модуля его код загружается на уровне системы и связывается с остальной частью ядра. Внутри модуля могут использоваться любые экспортируемые ядром функции.

Существуют варианты ОС GNU, в которых вместо монолитного ядра применяется ядро Mach (такое же, как в Hurd), а поверх него крутятся в пользовательском пространстве те же самые процессы, которые при использовании Linux были бы частью ядра. Другим примером смешанного подхода может служить возможность запуска операционной системы с монолитным ядром под управлением микроядра. Так устроены 4.4BSD и MkLinux, основанные на микроядре Mach. Микроядро обеспечивает управление виртуальной памятью и работу низкоуровневых драйверов. Все остальные функции, в том числе взаимодействие с прикладными программами, осуществляются монолитным ядром. Данный подход сформировался в результате попыток использовать преимущества микроядерной архитектуры, сохраняя по возможности хорошо отлаженный код монолитного ядра.

Смешанное ядро, в принципе, должно объединять преимущества монолитного ядра и микроядра: казалось бы, микроядро и монолитное ядро — крайности, а смешанное — золотая середина. В них возможно добавлять драйвера устройств двумя способами: и внутрь ядра, и в пользовательское пространство. Но на практике концепция смешанного ядра часто подчёркивает не только достоинства, но и недостатки обоих типов ядер.

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *