0

Индикатор влажности почвы своими руками

Самодельный, стабильный датчик влажности почвы для автоматической поливальной установки

Эта статья возникла в связи с постройкой автоматической поливальной машины для ухода за комнатными растениями. Думаю, что и сама поливальная машина может представлять интерес для самодельщика, но сейчас речь пойдёт о датчике влажности почвы. https://oldoctober.com/

Самые интересные ролики на Youtube

Пролог.

Конечно, прежде чем изобретать велосипед, я пробежался по Интернету.

Датчики влажности промышленного производства оказались слишком дороги, да и мне так и не удалось найти подробного описания хотя бы одного такого датчика. Мода на торговлю «котами в мешках», пришедшая к нам с Запада, уже похоже стала нормой.

Описания самодельных любительских датчиков в сети хотя и присутствуют, но все они работают по принципу измерения сопротивления почвы постоянному току. А первые же эксперименты показали полную несостоятельность подобных разработок.

Собственно, это меня не очень удивило, так как я до сих пор помню, как в детстве пытался измерять сопротивление почвы и обнаружил в ней. электрический ток. То есть стрелка микроамперметра фиксировала ток, протекающий между двумя электродами, воткнутыми в землю.

Эксперименты, на которые пришлось потратить целую неделю, показали, что сопротивление почвы может довольно быстро меняться, причём оно может периодически увеличиваться, а затем уменьшаться, и период этих колебаний может быть от нескольких часов до десятков секунд. Кроме этого, в разных цветочных горшках, сопротивление почвы меняется по-разному. Как потом выяснилось, жена подбирает для каждого растения индивидуальный состав почвы.

Вначале я и вовсе отказался от измерения сопротивления почвы и даже начал сооружать индукционный датчик, так как нашёл в сети промышленный датчик влажности, про который было написано, что он индукционный. Я собирался сравнивать частоту опорного генератора с частотой другого генератора, катушка которого одета на горшок с растением. Но, когда начал макетировать устройство, вдруг вспомнил, как однажды попал под «шаговое напряжение». Это и натолкнуло меня на очередной эксперимент.

И действительно, во всех, найденных в сети самодельных конструкциях, предлагалось замерять сопротивление почвы постоянному току. А что, если попытаться измерить сопротивление переменному току? Ведь по идее, тогда вазон не должен превращаться в "аккумулятор".

Собрал простейшую схему и сразу проверил на разных почвах. Результат обнадёжил. Никаких подозрительных поползновений в сторону увеличения или уменьшения сопротивления не обнаружилось даже в течение нескольких суток. Впоследствии, данное предположение удалось подтвердить на действующей поливальной машине, работа которой была основана на подобном принципе.

Электрическая схема порогового датчика влажности почвы.

В результате изысканий появилась эта схема на одной единственной микросхеме. Подойдёт любая из перечисленных микросхем: К176ЛЕ5, К561ЛЕ5 или CD4001A. У нас эти микросхемы продают всего по 6 центов.

Читайте также:  Заболело плечо что делать

R1 = 22MΩ
R2, R9 = 12kΩ
R3 = 470kΩ
R4 = 30kΩ
R5 = 47kΩ
R6 = 1MΩ
R7 = 5,1MΩ
R8 = 22MΩ
C1 = 1µF
C2 = 1µF
C3, C4 = 0,1µF
C5 = 10µF
DD1 = К561ЛЕ5

R9 = из расчёта 1kΩ на каждый Вольт
напряжения питания.

Датчик влажности почвы представляет собой пороговое устройство, реагирующее на изменение сопротивления переменному току (коротким импульсам).

На элементах DD1.1 и DD1.2 собран задающий генератор, вырабатывающий импульсы с интервалом около 10 секунд. https://oldoctober.com/

Конденсаторы C2 и C4 разделительные. Они не пропускают в измерительную цепь постоянный ток, которые генерирует почва.

Резистором R3 устанавливается порог срабатывания, а резистор R8 обеспечивает гистерезис усилителя. Подстроечным резистором R5 устанавливается начальное смещение на входе DD1.3.

Конденсатор C3 – помехозащищающий, а резистор R4 определяет максимальное входное сопротивление измерительной цепи. Оба эти элемента снижают чувствительность датчика, но их отсутствие может привести к ложным срабатываниям.

Не стоит также выбирать напряжение питания микросхемы ниже 12 Вольт, так как это снижает реальную чувствительность прибора из-за уменьшения соотношения сигнал/помеха.

Я не знаю, может ли длительное воздействие электрических импульсов оказать вредное воздействие на растения. Данная схема была использована только на стадии разработки поливальной машины.

В реальной конструкции автомата для полива растений я использовал другую схему, которая генерирует всего один короткий измерительный импульс в сутки, приуроченный ко времени полива растений.

Как это работает?

Прямоугольные импульсы большой длительности (поз.1), проходя через делитель напряжения, образованного элементами C2, R2, R3, Rпочвы, R4, C3, превращаются в короткие импульсы (поз.2). Эти импульсы через конденсатор С4 поступают на вход элемента DD1.3. Туда же, через резистор R6, поступает некоторый уровень постоянного напряжения (поз.3) с делителя напряжения R5.

Когда общий уровень напряжения на входе DD1.3 (поз.4) достигает порога срабатывания компаратора (отмечено красной точкой), запускается одновибратор на DD1.3, DD1.4. Длительность управляющего импульса на выходе DD1.4 определяется постоянной времени R7, C5.

Конструкция электродов.

Конструкция электродов должна обеспечить возможность измерения влажности почвы возле корней растения. Это особенно актуально для кактусов, полив которых осуществляется мизерным количеством воды.

Для изготовления электродов я сначала выбрал стальную углеродистую проволоку, но она слишком быстро заржавела, и её пришлось заменить на нержавеющею.

Для уменьшения уровня внешних электромагнитных помех, электроды соединяются со схемой экранированным кабелем, оплётка которого подключена к корпусу прибора.

А это детали, из которых были собраны электроды.

  1. Винт М3х8.
  2. Гровер М3.
  3. Шайба М3.
  4. Лепесток М3.
  5. Втулка – сталь, Ø8х10мм.
  6. Винт М3х6.
  7. Пластина – стеклотекстолит S = 2мм.
  8. Электрод – нерж. сталь Ø1,6х300мм.

Наверное, можно было бы выбрать и другой способ крепления электродов. Но, я выбрал такое крепление, чтобы можно было оперативно регулировать глубину погружения тридцатисантиметровых электродов в почву, а кабель, при этом, не создавал слишком большую нагрузку при погружении электродов в неглубокий горшок.

Самодельный, стабильный датчик влажности почвы для автоматической поливальной установки

Эта статья возникла в связи с постройкой автоматической поливальной машины для ухода за комнатными растениями. Думаю, что и сама поливальная машина может представлять интерес для самодельщика, но сейчас речь пойдёт о датчике влажности почвы. https://oldoctober.com/

Читайте также:  Как в делфи сделать таблицу

Самые интересные ролики на Youtube

Пролог.

Конечно, прежде чем изобретать велосипед, я пробежался по Интернету.

Датчики влажности промышленного производства оказались слишком дороги, да и мне так и не удалось найти подробного описания хотя бы одного такого датчика. Мода на торговлю «котами в мешках», пришедшая к нам с Запада, уже похоже стала нормой.

Описания самодельных любительских датчиков в сети хотя и присутствуют, но все они работают по принципу измерения сопротивления почвы постоянному току. А первые же эксперименты показали полную несостоятельность подобных разработок.

Собственно, это меня не очень удивило, так как я до сих пор помню, как в детстве пытался измерять сопротивление почвы и обнаружил в ней. электрический ток. То есть стрелка микроамперметра фиксировала ток, протекающий между двумя электродами, воткнутыми в землю.

Эксперименты, на которые пришлось потратить целую неделю, показали, что сопротивление почвы может довольно быстро меняться, причём оно может периодически увеличиваться, а затем уменьшаться, и период этих колебаний может быть от нескольких часов до десятков секунд. Кроме этого, в разных цветочных горшках, сопротивление почвы меняется по-разному. Как потом выяснилось, жена подбирает для каждого растения индивидуальный состав почвы.

Вначале я и вовсе отказался от измерения сопротивления почвы и даже начал сооружать индукционный датчик, так как нашёл в сети промышленный датчик влажности, про который было написано, что он индукционный. Я собирался сравнивать частоту опорного генератора с частотой другого генератора, катушка которого одета на горшок с растением. Но, когда начал макетировать устройство, вдруг вспомнил, как однажды попал под «шаговое напряжение». Это и натолкнуло меня на очередной эксперимент.

И действительно, во всех, найденных в сети самодельных конструкциях, предлагалось замерять сопротивление почвы постоянному току. А что, если попытаться измерить сопротивление переменному току? Ведь по идее, тогда вазон не должен превращаться в "аккумулятор".

Собрал простейшую схему и сразу проверил на разных почвах. Результат обнадёжил. Никаких подозрительных поползновений в сторону увеличения или уменьшения сопротивления не обнаружилось даже в течение нескольких суток. Впоследствии, данное предположение удалось подтвердить на действующей поливальной машине, работа которой была основана на подобном принципе.

Электрическая схема порогового датчика влажности почвы.

В результате изысканий появилась эта схема на одной единственной микросхеме. Подойдёт любая из перечисленных микросхем: К176ЛЕ5, К561ЛЕ5 или CD4001A. У нас эти микросхемы продают всего по 6 центов.

R1 = 22MΩ
R2, R9 = 12kΩ
R3 = 470kΩ
R4 = 30kΩ
R5 = 47kΩ
R6 = 1MΩ
R7 = 5,1MΩ
R8 = 22MΩ
C1 = 1µF
C2 = 1µF
C3, C4 = 0,1µF
C5 = 10µF
DD1 = К561ЛЕ5

R9 = из расчёта 1kΩ на каждый Вольт
напряжения питания.

Датчик влажности почвы представляет собой пороговое устройство, реагирующее на изменение сопротивления переменному току (коротким импульсам).

На элементах DD1.1 и DD1.2 собран задающий генератор, вырабатывающий импульсы с интервалом около 10 секунд. https://oldoctober.com/

Конденсаторы C2 и C4 разделительные. Они не пропускают в измерительную цепь постоянный ток, которые генерирует почва.

Резистором R3 устанавливается порог срабатывания, а резистор R8 обеспечивает гистерезис усилителя. Подстроечным резистором R5 устанавливается начальное смещение на входе DD1.3.

Читайте также:  Инструкция по фитнес браслету xiaomi mi 2

Конденсатор C3 – помехозащищающий, а резистор R4 определяет максимальное входное сопротивление измерительной цепи. Оба эти элемента снижают чувствительность датчика, но их отсутствие может привести к ложным срабатываниям.

Не стоит также выбирать напряжение питания микросхемы ниже 12 Вольт, так как это снижает реальную чувствительность прибора из-за уменьшения соотношения сигнал/помеха.

Я не знаю, может ли длительное воздействие электрических импульсов оказать вредное воздействие на растения. Данная схема была использована только на стадии разработки поливальной машины.

В реальной конструкции автомата для полива растений я использовал другую схему, которая генерирует всего один короткий измерительный импульс в сутки, приуроченный ко времени полива растений.

Как это работает?

Прямоугольные импульсы большой длительности (поз.1), проходя через делитель напряжения, образованного элементами C2, R2, R3, Rпочвы, R4, C3, превращаются в короткие импульсы (поз.2). Эти импульсы через конденсатор С4 поступают на вход элемента DD1.3. Туда же, через резистор R6, поступает некоторый уровень постоянного напряжения (поз.3) с делителя напряжения R5.

Когда общий уровень напряжения на входе DD1.3 (поз.4) достигает порога срабатывания компаратора (отмечено красной точкой), запускается одновибратор на DD1.3, DD1.4. Длительность управляющего импульса на выходе DD1.4 определяется постоянной времени R7, C5.

Конструкция электродов.

Конструкция электродов должна обеспечить возможность измерения влажности почвы возле корней растения. Это особенно актуально для кактусов, полив которых осуществляется мизерным количеством воды.

Для изготовления электродов я сначала выбрал стальную углеродистую проволоку, но она слишком быстро заржавела, и её пришлось заменить на нержавеющею.

Для уменьшения уровня внешних электромагнитных помех, электроды соединяются со схемой экранированным кабелем, оплётка которого подключена к корпусу прибора.

А это детали, из которых были собраны электроды.

  1. Винт М3х8.
  2. Гровер М3.
  3. Шайба М3.
  4. Лепесток М3.
  5. Втулка – сталь, Ø8х10мм.
  6. Винт М3х6.
  7. Пластина – стеклотекстолит S = 2мм.
  8. Электрод – нерж. сталь Ø1,6х300мм.

Наверное, можно было бы выбрать и другой способ крепления электродов. Но, я выбрал такое крепление, чтобы можно было оперативно регулировать глубину погружения тридцатисантиметровых электродов в почву, а кабель, при этом, не создавал слишком большую нагрузку при погружении электродов в неглубокий горшок.

Данное устройство можно использовать для автоматического полива в теплицах, цветочных оранжереях, клумбах и комнатных растениях. Ниже представлена схема, по который можно изготовить простейший датчик (детектор) влажности (или сухости) почвы своими руками.

Когда светодиод LED1 светится – земля сухая, при поливе светодиод гаснет.
Датчик (E1) сделан из двух железных пластин расположенных друг от друга на расстоянии пяти миллиметров
Транзисторы VT1, VT2 – КТ315.
R3 – три резистора по 91 Ом.
Микросхема DD1 – К155ЛА3
Исполнительное устройство: реле с потреблением катушки не более 90 ма
VR1 – кренка на 5 вольт.
Схема проверена мною. Если все детали исправны и все правильно собрано – работать будет сразу.

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *