0

История и принцип работы принтеров

Порой мы даже не задумываемся, сколько времени проходит с момента того или иного открытия, прежде чем оно станет применимым в обычной, повседневной жизни. Сколько требуется дополнительных сил, средств и расчетов, а порой и упорства на доведение этих теоретических разработок до их практического применения.

В нашем случае мы говорим о способах печати, которых, кстати сказать, не так уж и мало. Но остановимся мы на трех самых распространенных способых.

Матричные принтеры

Матричные принтеры являются одними из первых устройств автоматической печати. Их конструкция включает в себя печатающую головку (каретку), которая двигается вдоль строки и наносит символы ударами иголок, прижимающих ленту, пропитанную чернилами, к бумаге. Собственно, матричными такие принтеры называются потому, что все доступные для печати символы являются частью матрицы, образуемой расположением игл (которых может быть, например, 9 или 24).

Печатающие головки от принтеров Robotron и Epson FX-1000

Игла при этом приводится в движение небольшим электромагнитом. Исходя из всего этого ясно, что типичный матричный принтер способен печатать лишь по одной строке за раз, хотя встречаются экземпляры, печатающие за раз несколько «скученных» строк для повышения плотности точек.

Механизм протяжки красящей ленты с печатающей головкой.
Robotron CM 6329.02 M

Одним из первых матричных принтеров был LA30, производимый компанией Digital Equipment Corporation. Устройство могло печатать только заглавные буквы размером 5 на 7 точек со скоростью 30 символов в секунду на бумаге специального размера (80 символов на строку). Печатающая головка управлялась шаговым двигателем, а бумага протягивалась не особенно надежным и весьма шумным двигателем с храповым механизмом. LA30 имел как последовательный, так и параллельный интерфейс, однако в первом случае при возврате каретки в строке пропечатывались символы-заполнители.

Вслед за LA30 появился LA36, имевший куда больший коммерческий успех и ставший фактически архетипом компьютерного терминала матричной печати. В новой модели использовалась печатающая головка от LA30, однако длина строки была увеличена до 132 символов различного регистра и для печати годилась стандартная перфорированная бумага. Каретку приводил в движение более мощный сервопривод с электромотором, оптическим датчиком положения и тахометром. Ну, а бумага протягивалась уже знакомым двигателем с храповым механизмом.

LA36 имел только последовательный интерфейс, однако, в отличие от предшественника, не использовал символы-заполнители. Несмотря на то что принтер никогда не принимал от компьютера больше 30 символов в секунду, печатать он мог вдвое быстрее. Поэтому при возврате каретки следующие символы попадали в буфер и при печати новой строки принтер наверстывал упущенное со скоростью 60 символов в секунду. Из-за этого его всегда можно было узнать по чередующемуся шуму быстрой и обычной печати.

В то время как Digital Equipment Corporation расширяла линейку своих принтеров, основываясь на LA36, компания Centronics занималась реализацией принтерных механизмов японской Brother Industries и имела своей целью бюджетные решения. В процессе компания разработала известный всем пользователям матричных принтеров одноименный интерфейс, который стал стандартом де-факто и оставался им до появления в конце 1990-х годов шины USB.

В целом матричные принтеры считались устройствами недорогими и до 1990-х были наиболее распространены на рынке. Самой, пожалуй, популярной моделью был Epson MX-80. Однако с тех пор цены на них оставались примерно неизменными, создавая благоприятный фон для дешевеющих струйных и лазерных принтеров. Кроме того, на работе и дома пользователей преследовал резкий шум двигателей с храповым механизмом (хотя поздние модели уже стали работать тише). Да и качество печати было не всегда приемлемым, из-за чего многим приходилось покупать ПО наподобие Bradford или Windows 3.1, которое, кстати говоря, работу принтера сильно замедляло.

Все это постепенно привело к тому, что матричные принтеры уступили пальму первенства струйным и лазерным моделям, сохранив за собой лишь довольно узкую специализацию вроде печати чеков и тому подобных документов, также они применяются в бухгалтериях и билетных кассах для впечатывания текста в готовые бланки.

История струйной печати

История популярной ныне струйной печати, или, выражаясь научным языком, технологии безударного точечного высокоскоростного нанесения чернильных капель из микроскопических отверстий на твердый носитель для создания на нем требуемого изображения, насчитывает не один десяток лет. Но самым что ни на есть истоком, эту технологию впоследствии породившим, можно считать исследования француза Феликса Саварта, который еще в 1833 году обнаружил и отметил однотипность образования капель жидкости, выпускаемой через узкое отверстие. Математически это было впервые описано в 1878 году лордом Рейли (тогда еще будущим лауреатом Нобелевской премии). Однако лишь через много лет, в 1951 году компания Siemens запатентовала первое устройство, разделяющее струю на однотипные капли. Это изобретение привело к созданию мингографа, одного из первых коммерческих самописцев, используемых для регистрации значений напряжения.

В начале 1960-х профессор Суит из Стенфордского университета продемонстрировал, что с помощью волн давления поток жидкости можно разбить на одинаковые по размеру и удаленности друг от друга капли. На их непрерывный поток можно было выборочно подавать электрический заряд. При прохождении через электрическое поле заряженные капли отклонялись и собирались в коллекторе для рециркуляции, а незаряженные пролетали мимо него, попадали напрямую на твердый носитель и образовывали заданное изображение. Данный процесс получил название непрерывной струйной печати. К концу 1960-х годов изобретение Суита привело к появлению устройств A. B. Dick VideoJet и Mead DIJIT.

В следующем десятилетии всем известная компания IBM лицензировала вышеописанную технологию и запустила обширную программу ее адаптации к использованию в собственных принтерах. Первым результатом можно считать струйный принтер IBM 4640, представленный в 1976 году в качестве «периферийного устройства печати текста на твердых носителях».

Примерно в то же время профессор Херц из Лундского Технологического Института, что в Швеции, самостоятельно и независимо разработал ряд методов непрерывной струйной печати с возможностью регулирования параметров потока капель для печати в градациях серого цвета. Среди его разработок был метод управления количеством капель, приходящихся на один пиксел, который позволял регулировать плотность чернил и получать нужные оттенки. Данный метод был впоследствии лицензирован рядом компаний, включая Iris Graphics и Stork, для коммерческого производства качественных изображений для рынка препресса.

Несмотря на такую интенсивность развития непрерывной струйной печати, не стоит забывать и о методе drop-on-demand (или «капли по требованию»), суть которого заключалась в том, что устройство выпускало капли чернил только при необходимости их попадания на носитель. Очевидно, что данный подход исключал за ненадобностью сложную систему заряда и отклонения капель, а также ненадежные системы рециркуляции. Наработки в этой области были применены в устройстве последовательной печати символов Siemens PT-80 в 1977 году, а также в принтере компании Silonics, появившемся годом позже. В данных устройствах электрические импульсы приводили к выпуску чернильных капель под действием волны давления, создаваемой механическим движением пьезокерамического элемента.

В последующие годы, включая 1980-е, технология «капель по требованию» развивалась, эволюционировала и давала рождение новым коммерчески производимым принтерам. Предполагалось, что простота блоков нанесения чернил обеспечит высокую надежность струйных принтеров. Однако от проблем избавиться не удавалось, и много дегтя добавляли характерные засоры сопел и непостоянство качества изображения.

В 1979 году специалисты компании Canon изобрели метод печати по технологии drop-on-demand, в соответствии с которым капли выпускались из сопел из-за роста и схлопывания туманообразных частиц чернил на поверхности небольшого нагревателя, расположенного рядом с соплом. Canon назвала эту технологию bubble jet («пузырьковая печать»). Простота конструкции подобной печатающей головки и высокая точность нанесения чернил, которая обеспечивалась существующими технологиями производства, сделали данное решение достаточно дешевым при высокой плотности сопел.

Примерно в то же время компания Hewlett-Packard независимо разработала схожую технологию, которую она назвала «термической струйной печатью» (thermal inkjet). А в 1984 году она же выпустила на рынок решение ThinkJet — первый коммерчески успешный и относительно недорогой струйный принтер, работающий по технологии bubble jet.



Термическая струйная технология

Стоимость печатающей головки ThinkJet, которая насчитывала 12 сопел, была достаточно низка, чтобы иметь возможность просто выкинуть ее по опустошении картриджа. Сделав печатающую головку заменяемой, компания фактически решила извечную проблему надежности. С тех пор эта технология постоянно развивалась силами Hewlett-Packard и Canon, чьи усилия вознаграждались успехом их решений. Понятно, что успех этот обеспечивался постоянным повышением разрешения печати и расширением диапазона цветов при одновременном падении цен. Начиная с конца 1980-х годов, благодаря невысокой цене, компактным размерам, тишине работы и, естественно, цветовому диапазону струйные принтеры, работающие по технологии thermal inkjet или bubble jet, становились все более жизнеспособной альтернативой матричным устройствам среди конечных пользователей и, в конце концов, завоевали рынок недорогих цветных печатающих устройств.

История лазерных принтеров

Прежде чем рассказать об истории лазерных принтеров, необходимо пояснить, в чем, собственно, заключается суть технологии, на которой эти устройства основаны.

В основе лазерной печати лежит всем известное статическое электричество, которое заставляет притягиваться объекты с противоположными зарядами. Принтер использует этот эффект в качестве своеобразного «клея» временного действия. Главной частью печатающего устройства является фоторецептор — обычно вращающийся цилиндр (барабан) из фотопроводящего материала, разряжаемого фотонами. Сначала барабан заряжается положительным электрическим зарядом с помощью провода коронирования. По мере вращения барабан облучается лазером, который разряжает нужные точки на его поверхности, рисуя таким образом сетку необходимых букв и изображений. По завершению сетки барабан покрывается положительно заряженным тонером (мелким черным порошком), который прилипает только к разряженным областям барабана. После этого барабан прокатывается по протягиваемому листу бумаги, который несет на себе отрицательный заряд, полученный от другого провода коронирования. Данный заряд превосходит отрицательный заряд сетки, поэтому тонер притягивается к бумаге, формируя изображение. А чтобы бумага не прилипала к барабану, сразу же после нанесения тонера она испытывает действие третьего провода коронирования. Далее бумага проходит через термофиксатор («печку») — пару нагретых роликов. При этом тонер плавится и впечатывается в волокна бумаги, которая затем наконец выползает на лоток. После нанесения тонера на лист поверхность барабана проходит под яркой лампой разрядки для полного удаления электростатической сетки и получает новый положительный заряд от провода коронирования. И так далее.

Читайте также:  Бесплатные программы для записи видеоигр

А теперь перейдем к делам дней минувших. Если история струйной печати преисполнена научности и насыщена исследованиями и открытиями, то история создания и развития лазерных принтеров имеет, наверное, более деловой уклон и до известной степени связана скорее с маркетингом, нежели с наукой.

В 1938 году студент юридического факультета Честер Карлсон (который, кстати, в будущем стал адвокатом по патентным делам, чтобы подкрепить таким образом свои изобретательские таланты) получил первое ксерографическое изображение, что стало успешным результатом многих лет его работы, начавшейся из-за его недовольства медлительностью существующих мимеографов и дороговизной получаемых отпечатков. Само слово «ксерография» было образовано от греческих слов «сухой» и «писать». А смысл новой технологии заключался в использовании статического электричества для переноса сухих чернил (тонера) на бумагу.

Однако только по прошествии 8 лет, получив отказ от IBM и даже от войск связи США, в 1946 году Карлсону удалось найти компанию, которая согласилась производить придуманные им электростатические копиры. Этой компанией была Haloid Company, которая позже превратилась во всем известную Xerox Corporation.

На рынок первое устройство Xerox поступило в 1949 году под названием Model A. Это было весьма громоздкое и сложное устройство. Чтобы добиться от него копии документа, нужно было произвести вручную ряд операций. И лишь десять лет спустя был коммерциализирован полностью автоматический ксерограф — Xerox 914, который был способен выдавать 7 копий в минуту. Эта модель и стала прообразом всех копиров и лазерных принтеров, появившихся впоследствии.

Над созданием лазерных принтеров Xerox начала работать в 1969 году. Успеха добился в 1978 сотрудник компании Гэри Старкуезер, который смог добавить к технологии работы существующих копиров Xerox лазерный луч, создав таким образом первый лазерный принтер. Полнодуплексный Xerox 9700 мог печатать 120 страниц в минуту (он, кстати, до сих пор остается быстрейшим лазерным принтером в мире). Однако размеры устройства были просто огромны, а цена 350 тысяч долларов (без поправки на тогдашний курс) никак не укладывалась в идею «принтер в каждый дом».

В начале 1980-х спрос на устройства, превосходящие существующие матричные принтеры по качеству печати, достиг критической отметки. В 1982 году предложение последовало от компании Canon, представившей первый настольный лазерный принтер LBP-10. На следующий год компания в частном порядке продемонстрировала новую модель LBP-CX калифорнийским Apple, Diablo и HP.

На тот момент Canon требовались сильные партнеры по маркетингу своей продукции на новом для компании рынке, поскольку компания имела крепкие позиции в области камер и решений для офиса (тех же копиров), однако не имела связей, необходимых для эффективных продаж на рынке устройств обработки данных. Сначала Canon обратилась к Diablo Systems, подразделению Xerox Corporation. Это было очевидно и логично, поскольку Diablo владела большей частью рынка лепестковых принтеров, а ее маркетологи высказывали желание поместить логотип Diablo и на продукцию других производителей. Таким образом Xerox стала первой компанией, которой было предложено выводить на рынок систему CX с контроллером Canon.

Однако Xerox отклонила это предложение, поскольку вместе с японской Fuji-Xerox сама занималась разработками устройства, которое планировалось сделать лучшим настольным лазерным принтером на рынке. Но, хотя новая модель 4045 сочетала в себе копир и лазерный принтер, она весила около 50 килограммов, стоила вдвое больше CX, не имела заменяемого картриджа с тонером и обеспечивала не самое лучшее качество печати. Впоследствии бывшие маркетологи Diablo признавались, что упускать предложение Canon было довольно-таки большой ошибкой, а вышедший несколько позднее принтер HP LaserJet мог бы быть Xerox LaserJet.

В любом случае, после того как Diablo отклонила предложение Canon во Фремонте, представители последней, проехав несколько миль, навестили офисы HP в Пало Альто и Apple Computer в Купертино. Hewlett-Packard была вторым логически оправданным выбором, поскольку тесно сотрудничала с Diablo и имела достаточно широкие линейки матричных и лепестковых принтеров.

Результатом сотрудничества Canon и HP стал выпуск в 1984 году принтеров LaserJet, способных печатать 8 страниц в минуту. Их продажи весьма быстро росли и привели к тому, что к 1985 году Hewlett-Packard завладела почти всем рынком настольных лазерных принтеров. Надо учесть, что, как и в случае со струйными принтерами, новые устройства стали по-настоящему доступны лишь после разработки для них заменяемых картриджей с тонером (в данном случае разработчиком была Hewlett-Packard).

При этом вопросы удешевления новых и переработки использованных картриджей, количество которых стало намекать на проблемы с экологией, породили целую отрасль перерабатывающей промышленности, датой рождения которой можно считать 1986 год.

Что же ждет нас впереди? Пожалуй, на этот вопрос ответ сможет дать только время. Прогнозы и гадание — дело неблагодарное. Не думаю, что в ближайшем будущем мы сможем увидеть нечто принципиально новое и отличное от того, что уже есть. Используемые технологии находятся в своей пиковой фазе, следовательно, производители продолжат их шлифовать и обвешивать свои устройства новыми, доселе не свойственными современным принтерам опциональными функциями и возможностями. Вот и остается, если не сидеть сложа руки, то внимательно следить за появлением новых, еще более совершенных моделей.

Эра домашних принтеров началась с 1985 года, когда на рынке появились принтеры LaserJet от Hewlett-Packard и LaserWriter от Apple Computer.

Лазерный принтер HP LaserJet 4100TH.

Технология — прародитель современной лазерной печати появилась в 1938 годуЧестер Карлсон изобрёл способ печати, названный электрография, а затем переименованный в ксерографию. Принцип технологии заключался в следующем. По поверхности фотобарабана коротроном (скоротроном) заряда, либо валом заряда равномерно распределяется статический заряд, после этого светодиодным лазером (либо светодиодной линейкой) на фотобарабане снимается заряд, — тем самым на поверхность барабана помещается скрытое изображение. Далее на фотобарабан наносится тонер. Тонер притягивается к разряженным участкам поверхности фотобарабана, сохранившей скрытое изображение. После этого фотобарабан прокатывается по бумаге, и тонер переносится на бумагу коротроном переноса, либо валом переноса. После этого бумага проходит через блок термозакрепления для фиксации тонера, а фотобарабан очищается от остатков тонера и разряжается в узле очистки.

Первым лазерным принтером стал EARS (Ethernet, Alto, Research character generator, Scanned Laser Output Terminal), изобретённый в 1971 году в корпорации Xerox, а серийное производство было налажено во второй половине 1970-х. Принтер Xerox 9700 можно было приобрести в то время за 350 тысяч долларов, зато печатал он со скоростью 120 стр./мин.

Струйный принтер Epson CX3200.

Принцип действия струйных принтеров похож на матричные принтеры тем, что изображение на носителе формируется из точек. Но вместо головок с иголками в струйных принтерах используется матрица, печатающая жидкими красителями. Картриджи с красителями бывают со встроенной печатающей головкой — в основном такой подход используется компаниями Hewlett-Packard, Lexmark. Фирмы, в которых печатающая матрица является деталью принтера, а сменные картриджи содержат только краситель. При длительном простое принтера (неделя и больше) происходит высыхание остатков красителя на соплах печатающей головки. Принтер умеет сам автоматически чистить печатающую головку. Но также возможно провести принудительную очистку сопел из соответствующего раздела настройки драйвера принтера. При прочистке сопел печатающей головки происходит интенсивный расход красителя. Особенно критично засорение сопел печатающей матрицы принтеров Epson, Canon. Если штатными средствами принтера не удалось очистить сопла печатающей головки, то дальнейшая очистка и/или замена печатающей головки проводится в ремонтных мастерских. Замена картриджа, содержащего печатающую матрицу, на новый проблем не вызывает.

Для уменьшения стоимости печати и улучшения других характеристик принтера применяют систему непрерывной подачи чернил.

Печатающие головки струйных принтеров создаются с использованием следующих типов подачи красителя:

· Непрерывная подача (Continuous Ink Jet) — подача красителя во время печати происходит непрерывно, факт попадания красителя на запечатываемую поверхность определяется модулятором потока красителя. Утверждается, что патент на данный способ печати выдан Вильяму Томпсону (William Thomson) в 1867 году.

В технической реализации такой печатающей головки в сопло под давлением подаётся краситель, который на выходе из сопла разбивается на последовательность микро капель (объёмом нескольких десятков пиколитров), которым дополнительно сообщается электрический заряд. Разбиение потока красителя на капли происходит расположенным на сопле пьезокристаллом, на котором формируется акустическая волна (частотой в десятки килогерц). Отклонение потока капель производится электростатической отклоняющей системой (дефлектором). Те капли красителя, которые не должны попасть на запечатываемую поверхность, собираются в сборник красителя и, как правило, возвращаются обратно в основной резервуар с красителем. Первый струйный принтер, изготовленный с использованием данного способа подачи красителя, выпустила Siemens в 1951 году.

· Подача по требованию — подача красителя из сопла печатающей головки происходит только тогда, когда краситель действительно надо нанести на соответствующую соплу область запечатываемой поверхности. Именно этот способ подачи красителя и получил самое широкое распространение в современных струйных принтерах.

На данный момент существуют две технические реализации данного способа подачи красителя:

  • · Пьезоэлектрическая (Piezoelectric Ink Jet) — над соплом расположен пьезокристалл с диафрагмой. Когда на пьезоэлемент подаётся электрический ток он изгибается и тянет за собой диафрагму — формируется капля, которая впоследствии выталкивается на бумагу. Широкое распространение получила в струйных принтерах компании Epson. Технология позволяет изменять размер капли.
  • · Термическая (Thermal Ink Jet), также называемая BubbleJet — Разработчик — компания Canon. Принцип был разработан в конце 1970-х годов. В сопле расположен микроскопический нагревательный элемент, который при прохождении электрического тока мгновенно нагревается до температуры около 500 °C, при нагревании в чернилах образуются газовые пузырьки (англ. bubbles — отсюда и название технологии), которые выталкивают капли жидкости из сопла на носитель. В 1981 году технология была представлена на выставке Canon Grand Fair. В 1985 году — появилась первая коммерческая модель монохромного принтера — Canon BJ-80. В 1988 году появился первый цветной принтер — BJC-440 формата A2, разрешением 400 dpi.
Читайте также:  График функции тангенс модуль х

Термосублимация (возгонка) — это быстрый нагрев красителя, когда минуется жидкая фаза. Из твёрдого красителя сразу образуется пар. Чем меньше порция, тем больше фотографическая широта (динамический диапазон) цветопередачи. Пигмент каждого из основных цветов, а их может быть три или четыре, находится на отдельной (или на общей многослойной) тонкой лавсановой ленте (термосублимационные принтеры фирмы Mitsubishi Electric). Печать окончательного цвета происходит в несколько проходов: каждая лента последовательно протягивается под плотно прижатой термоголовкой, состоящей из множества термоэлементов. Эти последние, нагреваясь, возгоняют краситель. Точки, благодаря малому расстоянию между головкой и носителем, стабильно позиционируются и получаются весьма малого размера.

К серьёзным проблемам сублимационной печати можно отнести чувствительность применяемых чернил к ультрафиолету. Если изображение не покрыть специальным слоем, блокирующим ультрафиолет, то краски вскоре выцветут. При применении твёрдых красителей и дополнительного ламинирующего слоя с ультрафиолетовым фильтром для предохранения изображения, получаемые отпечатки не коробятся и хорошо переносят влажность, солнечный свет и даже агрессивные среды, но возрастает цена фотографий. За полноцветность сублимационной технологии приходится платить большим временем печати каждой фотографии (печать одного снимка 10Ч15 см принтером Sony DPP-SV77 занимает около 90 секунд).

Наиболее известными производителями термосублимационных принтеров являются Canon и Sony.

Фирмы-производители пишут о фотографической широте цвета в 24 бит, что больше желаемое, чем действительное. Реально, фотографическая широта цвета не более 18 бит.

Матричный принтер Amstrad DMP 3000.

Матричные принтеры — старейший из ныне применяемых типов принтеров, его механизм был изобретён в 1964 году в японской корпорации Seiko Epson. Матричные принтеры стали первыми устройствами, обеспечившими графический вывод твёрдой копии.

Изображение формируется печатающей головкой, которая состоит из набора иголок (игольчатая матрица), приводимых в действие электромагнитами. Головка передвигается построчно вдоль листа, при этом иголки ударяют по бумаге через красящую ленту, формируя точечное изображение. Этот тип принтеров называется SIDM (англ. Serial Impact Dot Matrix — последовательные ударно-матричные принтеры). Выпускались принтеры с 9, 12, 14, 18 и 24 иголками в головке. Основное распространение получили 9-ти и 24-игольчатые принтеры. Качество печати и скорость графической печати зависит от числа иголок: больше иголок — больше точек. Принтеры с 24-мя иголками называют LQ (англ. Letter Quality — качество пишущей машинки). Существуют монохромные 5 цветные матричные принтеры, в которых используется 4 цветная CMYK-лента. Смена цвета производится смещением ленты вверх-вниз относительно печатающей головки. Скорость печати матричных принтеров измеряется в CPS (англ. characters per second — символах в секунду).

Основными недостатками матричных принтеров являются: монохромность, низкая скорость работы и высокий уровень шума, который достигает 25 дБ. Для устранения этого недостатка в отдельных моделях предусмотрен тихий режим, но скорость печати в тихом режиме падает в 2 раза, так как в этом случае каждая строка печатается в два прохода с использованием половинного количества игл. Для борьбы с шумом ещё применяют специальные звуконепроницаемые кожухи. Некоторые модели 24-игольчатых матричных принтеров обладают возможностью цветной печати за счёт использования многоцветной красящей ленты. Однако достигаемое при этом качество цветной печати значительно уступает качеству печати струйных принтеров. Матричные принтеры достаточно широко используются и в настоящее время благодаря тому, что стоимость получаемой распечатки крайне низка, так как используется более дешёвая фальцованная или рулонная бумага. Последнюю к тому же можно отрезать кусками нужной длины (не форматными). Некоторые финансовые документы должны печататься только через копировальную бумагу, для исключения возможности их подделки.

Выпускаются и скоростные линейно-матричные принтеры, в которых большое количество иголок равномерно расположены на челночном механизме (фрете) по всей ширине листа. Скорость таких принтеров измеряется в LPS (англ. Lines per second — строках в секунду).

Барабанные принтеры (англ. drum printer). Первый принтер, получивший название UNIPRINTER, был создан в 1953 году компанией Remington Rand для компьютера UNIVAC. Основным элементом такого принтера был вращающийся барабан, на поверхности которого располагались рельефные изображения букв и цифр. Ширина барабана соответствовала ширине бумаги, а количество колец с алфавитом было равно максимальному количеству символов в строке. За бумагой располагалась линейка молоточков, приводимых в действие электромагнитами. В момент прохождения нужного символа на вращающемся барабане, молоточек ударял по бумаге, прижимая её через красящую ленту к барабану. Таким образом, за один оборот барабана можно было напечатать всю строку. Далее бумага сдвигалась на одну строку, и машина печатала дальше. В СССР такие машины назывались алфавитно-цифровыми печатающими устройствами (АЦПУ). Их распечатки можно узнать по шрифту, похожему на шрифт пишущей машины и «прыгающим» по строке буквам. Скорость вывода барабанного принтера была и остаётся самой высокой среди всех известных печатающих устройств, но и она далеко не являлась пределом возможности данной технологии. Печать производилась на рулонной бумаге, из-за чего системщики называли результат распечатки "простынёй".

Ромашковые (лепестковые) принтеры (daisywheel printer) по принципу действия были похожи на барабанные, однако имели один набор букв, располагающийся на гибких лепестках пластмассового диска. Диск вращался, и специальный электромагнит прижимал нужный лепесток к красящей ленте и бумаге. Так как набор символов был один, требовалось перемещение печатающей головки вдоль строки, и скорость печати была заметно ниже, чем у барабанных принтеров. Заменив диск с символами, можно было получить другой шрифт, а, вставив ленту не чёрного цвета — получить «цветной» отпечаток.

Шаровые принтеры (IBM Selectric) по принципу действия похожи на ромашковые принтеры, но литероноситель (печатающая головка) имел форму шара с выпуклыми буквами. Этот образ лёг в основу логотипа Википедии.

Гусеничные принтеры (train printer). Набор букв закреплён на гусеничной цепи;

Цепные печатающие устройства (chain printer). Отличались размещением печатающих элементов на соединённых в цепь пластинах;

Телетайпные принтеры состояли из электромеханической части, повторяющей электрическую печатную машинку, и модема. То есть, в один блок были объединены электрическая клавиатура, электромеханический рычаговый символьный принтер и устройство приёма и передачи информации по каналу связи. Дополнительно подключалось устройство записи и считывания перфоленты, обычно 5-рядной (5-битной).

Термические принтеры фирмы Xerox. Характеризуются расходным материалом — веществом на основе парафина, плавящимся при 60 град. по Цельсию.

Самый экологичный принтер. Японская компания PrePeat всерьез задумалась о защите окружающей среды и выпустила принтер, не требующий для работы ни чернил, ни тонера, ни бумаги. Для печати используется тонкий белый пластик. Перед повторной печатью лист автоматически очищается в принтере.

На рынке офисной техники появились новые принтеры, которые можно напрямую подключать к Интернету без подключения к компьютеру. Прямое подключение принтера к Интернету позволяет:

  • · Быстро распечатать документ или веб-страницу прямо с дисплея принтера;
  • · Распечатать документ или веб-страницу не только с ПК, но и с любого веб-устройства, без необходимости установки драйвера принтера;
  • · Просмотреть состояние принтера, добавить или удалить задание печати с помощью любого браузера, независимо от того, где вы находитесь — рядом с принтером или в километрах от него;
  • · Автоматически обновлять микропрограмму принтера, при этом добавляя новые функции к принтеру, сразу же после выпуска новой версии микропрограммы компанией производителем принтера.

Использование не по назначению.

В последнее время принтеры всё чаще стали использоваться не только для печати на бумаге.

Радиолюбители используют лазерные принтеры в «лазерно-утюжной» технологии изготовления плат, нанося маску для травления с помощью лазерного принтера.

Та же технология используется для нанесения надписей или изображений, в том числе цветных, на корпуса радиоприборов и иные объёмные предметы, которые штатным образом не помещаются в принтер. Для этого достаточно распечатать зеркально отражённый текст на вощёной бумаге и перенести плоским нагревателем под давлением на горячий предмет.

Ещё до появления матричных (графических) принтеров, людям хотелось выводить на печать хотя бы подобие графики. Даже сейчас в приложениях, например в графическом редакторе GIMP, есть опция вывода изображения в формате текстового файла ASCII, пригодного для печати на символьном принтере.

Printer – от английского слова «print» – печать.

Принтер – это внешнее периферийное устройство компьютера, предназначенное для вывода текстовой или графической информации, хранящейся в компьютере, на твёрдый носитель (бумагу, полимерную плёнку, и др.), без создания печатных форм. Этим принтеры отличаются от полиграфического оборудования, которое используется при больших тиражах печати текстов и графики.

Принтер – это высокотехнологичное устройство печати, созданное, в первую очередь, для работы с компьютером.

Принтер предназначен для преобразования информации, хранящейся в вычислительном устройстве, из цифровой формы в графический аналоговый вид для доступного понимания этой информации пользователем.

Предистория создания принтера.

Часто историю изобретения прототипа «принтера» связывают с именем математика Чарльза Бэббиджа, который в 1822 году начал заниматься разработкой самопечатающей машины. Он полагал что подобные устройства будут эффективно использоваться в банковском деле, инженерии и других областях.

Читайте также:  Идеи для создания программ

В 1834 году Чарльз Бэббидж начал работу по реальному созданию спроектированной им машины, но так и не довел дело до конца. И только, 150 лет спустя, сотрудники Британского музея Науки решили изготовить печатающую машину Чарльза Бэббиджа по сохранившимся чертежам. Как выяснилось, машина Бэббиджа оказалась работоспособной, она могла делать простейшие расчеты и выводить результаты на бумагу. Но весила эта машина несколько тонн и состояла из тысяч деталей!

На фотографии разностная машина Чарльза Бэббиджа,

которая представлена в лондонском Музее науки.

История создания принтера.

История «принтеров» начала своё реальное движение после изобретения первых компьютеров.

Лепестковые принтеры.

В 1950-х годах появились первые электронные компьютеры, и тут же возникла необходимость выводить результаты произведённых вычислений для их визуального восприятия и дальнейшей обработки. В то время самым распространённым устройством для этой цели была печатная машинка, и вычислительным центрам приходилось содержать целый штат машинисток, которые целый день стучали по клавишам.

Тогда-то изобретатели и задумались, как совместить печатную машинку с компьютером. И вот в 1953 году корпорацией Remington-Rand было создано печатающее устройство Uniprinter, которое внешним видом и принципом работы напоминало печатную машинку, только во много раз превосходило её по размерам. Такие устройства получили название лепестковых, из-за основного печатного механизма, по виду напоминающего цветок с лепестками, на конце которых были нанесены символы. Ударный механизм бил по лепестку, а тот через пропитанную краской ленту оставлял отпечаток на бумаге. Заменив одну «ромашку» на другую, можно было сменить символы или размер шрифта.

На фотографии лепестковый принтер.

Печатали эти принтеры со скоростью 78 000 знаков в минуту, и естественно ни одна машинистка не могла бы за ними угнаться: у человека средняя скорость печати составляет 200 знаков в минуту.

В 1954-1955 годах корпорацией IBM были созданы принтеры со скоростью печати 100 тысяч знаков в минуту, правда, надёжностью они не отличались и большого распространения не получили. Зато в 1959 году был выпущен принтер IBM 1403, со скоростью печати 184800 знаков в минуту. Бумага вылетала из принтера с такой огромной скоростью, что её не успевали собирать. Это, впрочем, никак не отражалось на качестве печати: оно было довольно высоким. Производились такие устройства и в Советском Союзе, только назывались они по другому: не принтеры, а АЦПУ – алфавитно-цифровые печатающие устройства.

Матичные принтеры.

Схожий с лепестковыми принтерами принцип печати и у принтеров матричных. Разница лишь в том, что оттиск через красящую ленту на бумаге оставляет не лепесток с литерой, а печатная головка, формирующая нужный символ из набора маленьких иголочек.

Первый матричный принтер был создан в 1964 году корпорацией Seiko Epson, и предназначался он для печати точного времени.

В 1970 году корпорация Centronics Data Computer разрабатывает свой матричный принтер, и становится их крупнейшим производителем в течение всего десятилетия. Скорость печати таких принтеров была невысока, зато они могли печатать любую сложную графику и не нуждались в конкретных лепестках.

Первый принтер, который по праву можно назвать домашним – это матричный принтер ImageWriter, который поступил в продажу в 1983 году вместе с компьютером Apple, и стоил «всего» 675 долларов.

На фотографии матричный принтер.

С тех пор технология матричной печати почти не изменилась, и если лепестковые принтеры давно нас покинули, то матричные принтеры успешно используются до сих пор. Это связано с дешевизной матричной печати. Всех расходных материалов: это катушка с красящей лентой, которая почти ничего не стоит, а служит долго.

Струйные принтеры.

Матричные принтеры давали хорошие результаты при печати, но были очень шумны, да и качество их печати всё же оставляет желать лучшего.

Мечта о тихом дешёвом принтере с высоким качеством печати не покидала умы изобретателей компьютеров.

Новый шаг в совершенствование принтеров позволило сделать изобретение физика Джона Уильяма Стретта (Лорд Рэлей), который изучал формирование капель в распадающейся струе жидкости. Эти исследования и легли в основу технологии струйной печати, которая разрабатывалась параллельно с лепестковой и матричной.

Так, в 1948 году в лаборатории компании Siemens был создан прототип печатающего устройства, способного печатать управляемыми струями краски. Но прежде чем в мире появились действительно нормально функционирующие струйные принтеры, прошло ещё почти четверть века. Все эти долгие годы учёные совершенствовали метод струйной печати, претворяя теоретические замыслы в практику.

В начале 1970-х – середине 1980-х годов инженерами таких ведущих компаний, как Epson, Brother, Canon и Hewlett-Packard были изобретены три основных метода струйной печати, различающиеся способом вывода краски на бумагу.

Роднит все эти методы то, что во всех принтерах есть ёмкость с краской, на дне которой – маленькое сопло, в котором формируется капелька краски. Далее, при помощи пьезоэлектрического эффекта или нагревания до больших температур, эта капля, сформированная особым образом, выстреливается на бумагу.

Первый струйный одноцветный принтер был выпущен компанией IBM в 1976 году (Model 6640), а в 1977-м году струйный принтер для персонального компьютера был выпущен компанией Siemens.

В начале 1990-х годов компания Hewlett-Packard запатентовала технологию цветной струйной печати. Цветное изображение получалось путём смешивания при печати красок трёх цветов: голубого, пурпурного и жёлтого, что в результате давало большое количество оттенков всех цветов.

С этого времени, принтеры стали печатать не только чёрно-белые, но и полноцветные изображения.

На фотографии цветной струйный принтер.

Лазерные принтеры.

Первые лазерные принтеры, которые появились на рынке в 1980-е годы, стоили более 10 тысяч долларов, что было очень дорого для рядового потребителя.

Технология лазерной печати начала развиваться ещё в 1938 году, когда американский физик и изобретатель Честер Карлсон изобрёл электрографический метод печати, который до сих пор используется во всех современных лазерных принтерах и копировальных аппаратах.

Суть лазерного метода печати состоит в том, что на фотобарабан, который представляет собой алюминиевую трубку, покрытую чувствительным к свету слоем, подаётся отрицательный электростатический заряд. Затем лазерный луч, проходя по поверхности барабана, снимает часть этого заряда в тех местах, где требуется нанести печать. Потом фотобарабан покрывается тонким слоем тонера (сухой пылевидной краской), но только в тех местах, где лазерный луч снял заряд. Далее наступает завершающая часть печати: барабан прокатывается по бумаге, оставляет на ней весь тонер, прилипший к нему, бумага проходит через печку, в которой тонер намертво спекается с её поверхностью.

Если на лазерном принтере нужно получить цветную печать, то на фотобарабан поочерёдно наносятся тонер четырёх цветов: черный, голубой, пурпурный и жёлтый, либо для получения цветного изображения необходимо произвести печать в четыре прохода. Таким образом устроены копировальные и некоторые факсимильные аппараты, которым лазерный принтер и обязан своим появлением.

В1969 году сотрудник фирмы Xerox Гэри Старквеатер придумал использовать в копировальном аппарате оригинальный механизм лазерной развёртки, превратив тем самым обычный копир в принтер. В 1971 году такой принтер был создан, но в серийное производство запущен не был, а так и остался в стенах лаборатории.

О первенстве выпуска первого лазерного принтера компании Xerox и IBM спорят до сих пор. Компания Xerox утверждает, что выпустила лазерный принтер в 1977 году, а компания IBM утверждает, что сделала это годом раньше.

Итак, в 1980-е годы многие фирмы-производители начали производство черно-белых лазерных принтеров, которые вначале стоили больше 10 тысяч долларов и имели невысокое качество печати. К началу 1990-х годов соотношение цена-качество стало более-менее приемлемым, и цена лазерных черно-белых принтеров снизилась до 1000 долларов.

В1993 году появился первый цветной лазерный принтер, разработанный компанией QMS и стоимостью 12,5 тысяч долларов, а спустя всего два года компания Apple выпустила цветной принтер уже стоимостью 7 тысяч.

В наше время лазерные принтеры стали доступны по ценам для рядового потребителя.

На фотографии цветной лазерный принтер.

Светодиодные принтеры.

С появлением и развитием светодиодной техники, начали производиться и модели светодиодных принтеров.

Технология печати у светодиодных принтеров тоже электрографическая, только устройство лазерной развёртки заменено на линейку из светодиодов, которая тянется вдоль фотобарабана. Светодиодные принтеры проще в изготовлении, меньше размером и дешевле своих лазерных собратьев, правда, скорость печати у них практически в два раза меньше.

На фотографии светодиодный принтер.

Принтеры 3D. Принтеры объемной печати.

Новая революционная идея в области принтерной печати – это конечно так называемые «3D принтеры», способные воспроизводить трёхмерные объекты. Разработка «3D принтеров» началась ещё в 1980-годы, и тогда они умели по принципу фрезерного станка слой за слоем обтачивать заготовку, чтобы придать ей надлежащий вид. Теперь «3D принтеры» стали настоящими принтерами, нанося на поверхность полимерные слои, формируя тем самым на плоской поверхности объёмный рельеф.

Современный 3D принтер способен воспроизвести из полимерного материала модель автомобиля, у которого даже будут крутиться колёса.

На фотографии 3D принтер.

В настоящее время технологии печати, созданные ещё в 20-м веке, остались неизменными. Изменились и значительно расширились в основном сферы применения принтеров и виды поверхностей, на которых современные принтеры могут печатать.

Принтер. Что такое принтер. История создания принтера. Виды принтеров.

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *