0

Как взаимодействуют проводники по которым течет ток

Если близко один к другому расположены проводники с токами одного направления, то магнитные линии этих проводников, охватывающие оба проводника, обладая свойством продольного натяжения и стремясь сократиться, будут заставлять проводники притягиваться (рис. 90, а).

Магнитные линии двух проводников с токами разных направлений в пространстве между проводниками направлены в одну сторону. Магнитные линии, имеющие одинаковое направление, будут взаимно отталкиваться. Поэтому проводники с токами противоположного направления отталкиваются один от другого (рис. 90, б).

Рассмотрим взаимодействие двух параллельных проводников с токами, расположенными на расстоянии а один от другого. Пусть длина проводников равна l.

Магнитная индукция, созданная током I1 на линии расположения второго проводника, равна

На второй проводник будет действовать электромагнитная сила

Магнитная индукция, созданная током I2 на линии расположения первого проводника, будет равна

и на первый проводник действует электромагнитная сила

равная по величине силе F2

На электромеханическом взаимодействии проводников с током основан принцип действия электродинамических измерительных приборов; используемых в цепях постоянного и в особенности переменного тока.

Задачи для самостоятельного решения

1. Определить напряженность магнитного поля, создаваемого током 100 а, проходящим по длинному прямолинейному проводнику в точке, удаленной от проводника на 10 см.

2. Определить напряженность магнитного поля, создаваемого током 20 а, проходящим по кольцевому проводнику радиусом 5 см в точке, расположенной в центре витка.

3. Определить магнитный поток, проходящий в куске никеля, помещенного в однородное магнитное поле напряженностью 500 а/м. Площадь поперечного сечения куска никеля 25 ом 2 (относительная магнитная проницаемость никеля 300).

4. Прямолинейный проводник длиной 40 см помещен в равномерное магнитное поле под углом 30°С к направлению магнитного поля. По проводнику проходит § ток 50 А. Индукция поля равна 5000 ее. Определять силу, с которой проводник выталкивается из магнитного поля.

5. Определить силу, с которой два прямолинейных, параллельно расположенных в воздухе проводника отталкиваются один от другого. Длина проводников 2 м, расстояние между ними 20 см. Токи в проводниках по 10 А.

1. На каком опыте можно убедиться, что вокруг проводника с током образуется магнитное поле?

2. Каковы свойства магнитных линий?

3. Как определить направление магнитных линий?

4. Что называется соленоидом и каково его магнитное поле?

5. Как определить полюсы соленоида?

6. Что называется электромагнитом и как определить его полюсы?

7. Что такое гистерезис?

8. Каковы формы электромагнитов?

9. Как взаимодействуют между собой проводники, по которым течет электрический ток?

10.Что действует на проводник с током в магнитном поле?

Читайте также:  Беспроводные наушники свен как подключить к телефону

11.Как определить направление силы, действующей на проводник с током в магнитном поле?

12.На каком принципе основана работа электродвигателей?

Опыт показывает, что проводники, по которым текут электрические токи, взаимодействуют друг с другом. Так, например, два тонких прямолинейных параллельных проводника притягиваются друг к другу, если направления протекающих в них токов совпадают, и отталкиваются, если направления токов противоположны (рис. 2).

Рис. 2. Взаимодействие параллельных проводников с током.

Определяемая экспериментально сила взаимодействия проводников, отнесенная к единице длины проводника (т.е., действующая на 1м проводника) вычисляется по формуле:

,

где и – силы токов в проводниках, – расстояние между ними в системе СИ, – так называемая, магнитная постоянная ().

Связь между электрической и магнитной постоянными определяется соотношением:

где = 3·10 8 м/с – скорость света в вакууме.

На основании эмпирической формулы для установлена единица силы тока в системе СИ – Ампер (А).

Ампер – сила такого неизменяющегося тока, который, проходя по двум прямолинейным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызывает силу взаимодействия между ними, равную 2·10 -7 Н на 1 м длины.

Итак, при протекании электрического тока по проводнику в окружающем его пространстве происходят какие-то изменения, что заставляет проводники с током взаимодействовать, а магнитную стрелку вблизи проводника с током поворачиваться. Таким образом, мы пришли к выводу, что взаимодействие между магнитами, проводником и током, между проводниками с током осуществляется посредством материальной среды, получившей название магнитного поля. Из опыта Эрстеда следует, что магнитное поле имеет направленный характер, поскольку угол поворота стрелки зависит от величины и направления протекающего тока. Это подтверждается также и опытами по взаимодействию проводников с током.

1.3. Индукция магнитного поля

Рассмотрим взаимодействие прямого проводника с током с магнитным полем подковообразного магнита. В зависимости от направления тока проводник втягивается или выталкивается из магнита (рис. 3).

Рис. 3. Взаимодействие прямого проводника с током с магнитным полем подковообразного магнита.

Мы пришли к заключению, что на проводник с током, помещенный в магнитное поле, действует сила. Причем эта сила зависит от длины проводника и величины протекающего по нему тока, а также от его ориентации в пространстве. Можно найти такое положение проводника в магнитном поле, когда эта сила будет максимальной. Это и позволяет ввести понятие силовой характеристики магнитного поля.

Силовой характеристикой магнитного поля является физическая величина, определяемая в данном случае как

,

Она получила название индукции магнитного поля. Здесь – максимальная сила, действующая на проводник с током в магнитном поле,– длина проводника,– сила тока в нем.

Читайте также:  Батарейка для bios ноутбука hp

Единица измерения вектора магнитной индукции – тесла .

1 Тл – индукция такого магнитного поля, которое действует с силой 1 Н на каждый метр длины прямолинейного проводника, расположенного перпендикулярно направлению поля, если по проводнику течет ток 1 А:

Индукция магнитного поля – величина векторная. Направление вектора магнитной индукции в нашем случае связано с направлениямииправилом левой руки (рис. 4):

если вытянутые пальцы направить по направлению тока в проводнике, а силовые линии магнитного поля будут входить в ладонь, то отогнутый большой палец укажет направление силы , действующей на проводник с током со стороны магнитного поля.

Рис. 4. Правило левой руки

Численное значение вектора можно определить и через момент сил, действующих на рамку с током в магнитном поле:

,

– максимальный вращательный момент, действующий на рамку с током в магнитном поле, – площадь рамки,– сила тока в ней.

За направление вектора в этом случае (рис. 5) принимается направление нормали к плоскости витка, выбранное так, чтобы, глядя навстречу , ток по витку протекал бы против часовой стрелки.

Единица измерения вектора магнитной индукции – тесла .

За направление вектора в этом случае (рис. 5) принимается направление нормали к плоскости витка, выбранное так, чтобы, глядя навстречу , ток по витку протекал бы против часовой стрелки.

Рис. 5. Ориентирующее действие магнитного поля на рамку с током.

Силовые линии магнитного поля (линии индукции магнитного поля) – это линии, в каждой точке которых вектор направлен по касательной к ним.

Модуль магнитной индукции пропорционален густоте силовых линий, т.е. числу линий, пересекающих поверхность единичной площади, перпендикулярную этим линиям.

В таблице 1 приведены картины силовых линий для различных магнитных полей.

Так, например, направление линий магнитной индукции прямого провода с током определяется по правилу буравчика (или «правого винта»):

если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции.

Таким образом, силовые линии магнитного поля бесконечного прямого проводника с током представляют собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику. С увеличением радиуса r окружности модуль вектора индукции магнитного поля уменьшается.

Для постоянного магнита за направление силовых линий магнитного поля принято направление от северного полюса магнита N к южному S.

Картина линий индукции магнитного поля для соленоида поразительно похожа на картину линий индукции магнитного поля для постоянного магнита. Это навело на мысль о том, что внутри магнита имеется много маленьких контуров с током. Соленоид тоже состоит из таких контуров – витков. Отсюда и сходство магнитных полей.

Читайте также:  Жёлтые полосы на экране телефона

На рисунке 3.2.8 отражена картина взаимодействия двух длинных прямолинейных проводников, расположенных параллельно друг другу на расстоянии а друг от друга: (рис. 3.2.8, a) – токи в проводниках имеют одинаковые направления; рис (3.2.8, б) – токи имеют противоположные направления).

Опыт показывает, что при пропускании по проводникам тока между ними возникают силы взаимодействия. Если токи 1 и /2 в обоих проводниках направлены в одну сторону, то проводники притягиваются друг к другу (рис. 3.2.8, а), а если направления токов взаимно противоположны, то проводники отталкиваются друг от друга (рис. 3.2.8, б).

Взаимодействие параллельных токов было впервые обнаружено Ампером в 1820 г., и его можно легко объяснить на основе закона Ампера, если учесть, что каждый из проводников создает свое магнитное поле.

По закону Ампера на элемент d/ второго проводника с током /2

действует сила F29 численно равная (согласно (3.1.3):

где Вх – магнитная индукция поля, создаваемого током /ь (текущим по первому проводнику) в точках, где находится проводник с током /2.

Если длина проводников во много раз больше расстояния а между ними, а элемент d/ находится вдали от концов проводника, то при определении индукции В можно считать первый проводник бесконечно длинным, тогда, используя выражение (3.2.10), запишем:

Вектор магнитной индукции Вх перпендикулярен элементу длины d/ второго проводника, поэтому, подставив (3.2.25) в (3.2.24), получим,

аВ j г- Йо 2LIAI

Направление dF2 определяется по правилу левой руки.

Подобными рассуждениями можно показать, что на участок длины d/ первого проводника действует сила dFx, направленная в сторону, противоположную силе dF2, и численно ей равная.

Тогда для сил dF< и dР2 можно записать общую формулу:

Проинтегрировав данное выражение по длине проводника, найдем значение вектора силы, действующей на проводник конечной длины /:

Данная формула определяет силу взаимодействия двух параллельных прямолинейных бесконечно длинных проводников, по которым текут постоянные токи, и справедлива также для определения силы взаимодействия двух проводников, расстояние между которыми а « I. (Направления сил взаимодействия определяется с использованием правила левой руки.)

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *