0

Знак среднее арифметическое символ

Сре́днее арифмети́ческое (в математике и статистике) множества чисел — число, равное сумме всех чисел множества, делённой на их количество. Является одной из наиболее распространённых мер центральной тенденции.

Частными случаями среднего арифметического являются среднее (генеральной совокупности) и выборочное среднее (выборки).

При стремлении количества элементов множества чисел стационарного случайного процесса к бесконечности среднее арифметическое стремится к математическому ожиданию случайной величины.

Содержание

Введение [ править | править код ]

Обозначим множество чисел X = (x1, x2, …, xn), тогда выборочное среднее обычно обозначается горизонтальной чертой над переменной ( x ¯ <displaystyle <ar >> , произносится «x с чертой»).

Для обозначения среднего арифметического всей совокупности чисел обычно используется греческая буква μ. Для случайной величины, для которой определено среднее значение, μ есть вероятностное среднее или математическое ожидание случайной величины. Если множество X является совокупностью случайных чисел с вероятностным средним μ, тогда для любой выборки xi из этой совокупности μ = E<xi> есть математическое ожидание этой выборки.

На практике разница между μ и x ¯ <displaystyle <ar >> в том, что μ является типичной переменной, потому что видеть можно скорее выборку, а не всю генеральную совокупность. Поэтому, если выборку представлять случайным образом (в терминах теории вероятностей), тогда x ¯ <displaystyle <ar >> (но не μ) можно трактовать как случайную переменную, имеющую распределение вероятностей на выборке (вероятностное распределение среднего).

Обе эти величины вычисляются одним и тем же способом:

x ¯ = 1 n ∑ i = 1 n x i = 1 n ( x 1 + ⋯ + x n ) . <displaystyle <ar >=<frac <1>>sum _^x_=<frac <1>>(x_<1>+cdots +x_).>

Если X — случайная переменная, тогда математическое ожидание X можно рассматривать как среднее арифметическое значений в повторяющихся измерениях величины X. Это является проявлением закона больших чисел. Поэтому выборочное среднее используется для оценки неизвестного математического ожидания.

В элементарной алгебре доказано, что среднее n + 1 чисел больше среднего n чисел тогда и только тогда, когда новое число больше чем старое среднее, меньше тогда и только тогда, когда новое число меньше среднего, и не меняется тогда и только тогда, когда новое число равно среднему. Чем больше n, тем меньше различие между новым и старым средними значениями.

Примеры [ править | править код ]

  • Для получения среднего арифметического трёх чисел необходимо сложить их и разделить на 3:

x 1 + x 2 + x 3 3 . <displaystyle <frac <1>+x_<2>+x_<3>><3>>.>

  • Для получения среднего арифметического четырёх чисел необходимо сложить их и разделить на 4:

x 1 + x 2 + x 3 + x 4 4 . <displaystyle <frac <1>+x_<2>+x_<3>+x_<4>><4>>.>

Непрерывная случайная величина [ править | править код ]

Если существует интеграл от некоторой функции f ( x ) <displaystyle f(x)> одной переменной, то среднее арифметическое этой функции на отрезке [ a ; b ] <displaystyle [a;b]> определяется через определённый интеграл:

f ( x ) ¯ [ a ; b ] = 1 b − a ∫ a b f ( x ) d x . <displaystyle <overline >_<[a;b]>=<frac <1>>int _^f(x)dx.>

Здесь подразумевается, что a.>"> b > a . <displaystyle b>a.> a.>"/>

Некоторые проблемы применения среднего [ править | править код ]

Отсутствие робастности [ править | править код ]

Хотя среднее арифметическое часто используется в качестве средних значений или центральных тенденций, это понятие не относится к робастной статистике, что означает, что среднее арифметическое подвержено сильному влиянию «больших отклонений». Примечательно, что для распределений с большим коэффициентом асимметрии среднее арифметическое может не соответствовать понятию «среднего», а значения среднего из робастной статистики (например, медиана) может лучше описывать центральную тенденцию.

Классическим примером является подсчёт среднего дохода. Арифметическое среднее может быть неправильно истолковано в качестве медианы, из-за чего может быть сделан вывод, что людей с большим доходом больше, чем на самом деле. «Средний» доход истолковывается таким образом, что доходы большинства людей находятся вблизи этого числа. Этот «средний» (в смысле среднего арифметического) доход является выше, чем доходы большинства людей, так как высокий доход с большим отклонением от среднего делает сильный перекос среднего арифметического (в отличие от этого, средний доход по медиане «сопротивляется» такому перекосу). Однако, этот «средний» доход ничего не говорит о количестве людей вблизи медианного дохода (и не говорит ничего о количестве людей вблизи модального дохода). Тем не менее, если легкомысленно отнестись к понятиям «среднего» и «большинство народа», то можно сделать неверный вывод о том, что большинство людей имеют доходы выше, чем они есть на самом деле. Например, отчёт о «среднем» чистом доходе в Медине, штат Вашингтон, подсчитанный как среднее арифметическое всех ежегодных чистых доходов жителей, даст на удивление большое число из-за Билла Гейтса. Рассмотрим выборку (1, 2, 2, 2, 3, 9). Среднее арифметическое равно 3.17, но пять значений из шести ниже этого среднего.

Сложный процент [ править | править код ]

Если числа перемножать, а не складывать, нужно использовать среднее геометрическое, а не среднее арифметическое. Наиболее часто этот казус случается при расчёте окупаемости инвестиций в финансах.

Например, если акции в первый год упали на 10 %, а во второй год выросли на 30 %, тогда некорректно вычислять «среднее» увеличение за эти два года как среднее арифметическое (−10 % + 30 %) / 2 = 10 %; правильное среднее значение в этом случае дают совокупные ежегодные темпы роста, по которым годовой рост получается только около 8,16653826392 % ≈ 8,2 %.

Причина этого в том, что проценты имеют каждый раз новую стартовую точку: 30 % — это 30 % от меньшего, чем цена в начале первого года, числа: если акции в начале стоили $30 и упали на 10 %, они в начале второго года стоят $27. Если акции выросли на 30 %, они в конце второго года стоят $35.1. Арифметическое среднее этого роста 10 %, но поскольку акции выросли за 2 года всего на $5.1, средний рост в 8,2 % даёт конечный результат $35.1:

[$30 (1 — 0.1) (1 + 0.3) = $30 (1 + 0.082) (1 + 0.082) = $35.1]. Если же использовать таким же образом среднее арифметическое значение 10 %, мы не получим фактическое значение: [$30 (1 + 0.1) (1 + 0.1) = $36.3].

Читайте также:  Бесплатные настройки интернета мтс

Сложный процент в конце 2 года: 90 % * 130 % = 117 % , то есть общий прирост 17 %, а среднегодовой сложный процент 117 % ≈ 108.2 % <displaystyle <sqrt <117\%>>approx 108.2\%> , то есть среднегодовой прирост 8,2 %.

Направления [ править | править код ]

При расчёте среднего арифметического значений некоторой переменной, изменяющейся циклически (например, фаза или угол), следует проявлять особую осторожность. Например, среднее чисел 1° и 359° будет равно 1 ∘ + 359 ∘ 2 = <displaystyle <frac <1^<circ >+359^<circ >><2>>=> 180°. Это число неверно по двум причинам.

  • Во-первых, угловые меры определены только для диапазона от 0° до 360° (или от 0 до 2π при измерении в радианах). Таким образом, ту же пару чисел можно было бы записать как (1° и −1°) или как (1° и 719°). Средние значения каждой из пар будут отличаться: 1 ∘ + ( − 1 ∘ ) 2 = 0 ∘ <displaystyle <frac <1^<circ >+(-1^<circ >)><2>>=0^<circ >>, 1 ∘ + 719 ∘ 2 = 360 ∘ <displaystyle <frac <1^<circ >+719^<circ >><2>>=360^<circ >>.
  • Во-вторых, в данном случае, значение 0° (эквивалентное 360°) будет геометрически лучшим средним значением, так как числа отклоняются от 0° меньше, чем от какого-либо другого значения (у значения 0° наименьшая дисперсия). Сравните:
  • число 1° отклоняется от 0° всего на 1°;
  • число 1° отклоняется от вычисленного среднего, равного 180°, на 179°.

Среднее значение для циклической переменной, рассчитанное по приведённой формуле, будет искусственно сдвинуто относительно настоящего среднего к середине числового диапазона. Из-за этого среднее рассчитывается другим способом, а именно, в качестве среднего значения выбирается число с наименьшей дисперсией (центральная точка). Также вместо вычитания используется модульное расстояние (то есть, расстояние по окружности). Например, модульное расстояние между 1° и 359° равно 2°, а не 358° (на окружности между 359° и 360°==0° — один градус, между 0° и 1° — тоже 1°, в сумме — 2°).

Среднее арифметическое

Сущность и значение средних величин.

Абсолютные и относительные величины.

Виды группировок.

В зависимости от задач, решаемых с помощью группировок выделяют следующие их виды:

Главная задача типологической состоит в классификации социально-экономических явлений путем выделения однородных к качественным отношениям групп.

Качественная однородность при этом понимается в том смысле, что в отношении изучаемого свойства все единицы совокупности подчиняются одному закону развития. Например: группировка предприятиям отраслей экономики.

Абсолютной величиной называется показатель, выражающий размеры социально-экономического явления.

Относительной величиной в статистике называется показатель, выражающий количественное соотношение между явлениями. Он получается в результате деления одной абсолютной величины на другую абсолютную величину. Величина с которой мы производим сравнения называется основанием или базой сравнения.

Абсолютные величины – всегда величины именованные.

Относительные величины выражаются в коэффициентах, процентах, промили и т.д.

Относительная величина показывает, во сколько раз, или на сколько процентов сравниваемая величина больше или меньше базы сравнения.

В статистике различают 8 видов относительных величин:

Средние величины являются одними из наиболее распространенных обобщающих статистических показателей. Они имеют своей целью одним числом охарактеризовать статистическую совокупность состоящую из меньшинства единиц. Средние величины тесно связаны с законом больших чисел. Сущность этой зависимости заключается в том, что при большом числе наблюдений случайные отклонения от общей статистики взаимопогашаются и в среднем более отчетливо проявляется статистическая закономерность.

С помощью метода средних решаются следующие основные задачи:

1. Характеристика уровня развития явлений.

2. Сравнение двух или нескольких уровней.

3. Изучение взаимосвязей социально-экономических явлений.

4. Анализ размещения социально-экономических явлений в пространстве.

Для решения этих задач статистическая методология разработала различные виды средних.

Для выяснения методики расчета средней арифметической используем следующие обозначения:

X – арифметический признак

X (X1, X2, . X3) – варианты определенного признака

n – число единиц совокупности

– средняя величина признака

В зависимости от исходных данных средняя арифметическая может быть рассчитана двумя способами:

1. Если данные статистического наблюдения на сгруппированы, или сгруппированные варианты имеют одинаковые частоты, то рассчитывается средняя арифметическая простая:

2. Если частоты сгруппированы в данных разные, то рассчитывается среднее арифметическое взвешанное:

– численность (частоты) вариантов

– сумма частот

Среднее арифметическое рассчитывается по разному в дискретных и интервальных вариационных рядах.

В дискретных рядах варианты признака умножаются на частоты, эти произведения суммируются и полученная сумма произведений делится на сумму частот.

Рассмотрим пример вычисления средней арифметической в дискретном ряду:

Заработная плата, руб. Xi Число сотрудников, чел. fi Произведение вариант на веса (частоты) Xi*fi
Итого:

В интервальных рядах значение признака задано, как известно, в виде интервалов, поэтому, прежде чем рассчитывать среднюю арифметическую, нужно перейти от интервального ряда к дискретному.

В качестве вариантов Xi используется середина соответствующих интервалов. Они определяются как полусумма нижней и верхней границ.

Если у интервала отсутствует нижняя граница, то его середина определяется как разность между верхней границей и половиной величины следующих интервалов. При отсутствии верхних границ, середина интервала определяется как сумма нижней границы и половины величины предыдущего интервала. После перехода к дискретному ряду дальнейшие вычисления происходят по методике рассмотренной выше.

Если веса fi заданы не в абсолютных показателях, а в относительных, то формула расчета средней арифметической будет следующей:

pi – относительные величины структуры, показывающие, какой процент составляют частоты вариантов в сумме всех частот.

Если относительные величины структуры заданы не в процентах, а в долях, то среднее арифметическое будет рассчитываться по формуле:

Среднее значение

Сре́днее значе́ние — числовая характеристика множества чисел или функций (в математике); — некоторое число, заключённое между наименьшим и наибольшим из их значений.

Основные сведения

Исходным пунктом становления теории средних величин явилось исследование пропорций школой Пифагора. При этом не проводилось строгого различия между понятиями средней величины и пропорции. Значительный толчок развитию теории пропорций с арифметической точки зрения был дан греческими математиками — Никомахом Герасским (конец I — начало II в. н. э.) и Паппом Александрийским (III в. н. э.). Первым этапом развития понятия средней является этап, когда средняя стала считаться центральным членом непрерывной пропорции. Но понятие средней как центрального значения прогрессии не даёт возможности вывести понятие средней по отношению к последовательности n членов, независимо от того, в каком порядке они следуют друг за другом. Для этой цели необходимо прибегнуть к формальному обобщению средних. Следующий этап — переход от непрерывных пропорций к прогрессиям — арифметической, геометрической и гармонической (англ.)[1].

Читайте также:  Как включить режим блокировки экрана

В истории статистики впервые широкое употребление средних величин связано с именем английского учёного У. Петти. У. Петти один из первых пытался придать средней величине статистический смысл, связав её с экономическими категориями. Но описания понятия средней величины, его выделения, Петти не произвёл. Родоначальником теории средних величин принято считать А. Кетле. Он одним из первых начал последовательно разрабатывать теорию средних величин, пытаясь подвести под неё математическую базу. А. Кетле выделял два вида средних величин — собственно средние и средние арифметические. Собственно средние представляют вещь, число, действительно существующие. Собственно средние или средние статистические должны выводиться из явлений однокачественных, одинаковых по своему внутреннему значению. Средние арифметические — числа, дающие возможно близкое представление о многих числах, различных, хотя и однородных[2].

Каждый из видов средней может выступать либо в форме простой, либо в форме взвешенной средней. Правильность выбора формы средней вытекает из материальной природы объекта исследования. Формулы простых средних применяются в случае, если индивидуальные значения усредняемого признака не повторяются. Когда в практических исследованиях отдельные значения изучаемого признака встречаются несколько раз у единиц исследуемой совокупности, тогда частота повторений индивидуальных значений признака присутствует в расчётных формулах степенных средних. В этом случае они называются формулами взвешенных средних.[3]

Иерархия средних значений в математике

  • среднее значение функции — понятие, определяемое многими способами.
  • Более конкретно, но на основе произвольных функций, определяются средние Колмогорова для набора чисел.
  • среднее степенное — частный случай средних Колмогорова при ϕ ( x ) = x α <displaystyle phi (x)=x^<alpha >> . Средние различных степеней связывает между собой неравенство о средних. Наиболее распространённые частные случаи:
    1. среднее арифметическое ( α = 1 <displaystyle alpha =1>);
    2. среднее квадратическое ( α = 2 <displaystyle alpha =2>);
    3. среднее гармоническое ( α = − 1 <displaystyle alpha =-1>);
    4. по непрерывности при α → 0 <displaystyle alpha o 0>доопределяется среднее геометрическое, которое также является Колмогоровским средним при ϕ ( x ) = log ⁡ x
  • Среднее взвешенное — обобщение средней величины на случай произвольной линейной комбинации:
    • Среднее арифметическое взвешенное.
    • Среднее геометрическое взвешенное.
    • Среднее гармоническое взвешенное.
    • среднее хронологическое — обобщает значения признака для одной и той же единицы или совокупности в целом, изменяющихся во времени.
    • среднее логарифмическое, определяемое по формуле a ¯ = a 1 − a 2 ln ⁡ ( a 1 / a 2 ) < extstyle <ar >=<frac
    • <1>-a_<2>><ln(a_<1>/a_<2>)>>> , используется в теплотехнике

    • среднее логарифмическое, определяемое в электроизоляции соответствии с ГОСТ 27905.4-88 определяется как l o g a ¯ = log ⁡ a 1 + l o g a 2 + . . . + . . . l o g a n a 1 + a 2 + . . . + a n < extstyle log<ar >=<frac <log a_<1>+loga_<2>+. +. loga_>
    • <1>+a_<2>+. +a_>>> (логарифм по любому основанию)[4]

      В теории вероятностей и статистике

      Каким знаком обозначается среднее арифметическое значение?

      Вот, скажем, сумма – это эпсилон прописная.

      Ксения

      Средняя арифметическая – это тот предел, около которого группируются отдельные значения наблюдаемых и изучаемых характеристик, Средняя арифметическая – частное от деления суммы значений кого-либо признака на число элементов совокупности. В статистике средняя арифметическая обычно обозначается через отдельные значения признака (или частные результаты опыта) – через x1, x2, x3 и т. д., а общие количество признаков (или количество опытов) – n.
      При большом количестве измерений положительные и отрицательные случайные погрешности встречаются одинаково часто. По многократным измерениям какой-либо физической величины можно определить ее среднее арифметическое значение. Многократные измерения также дают возможность установить точность измерения, как для окончательного результата, так и для отдельных измерений, т. е. найти те границы, в которых находится полученный результат измеряемой величины.
      При п измерениях некоторой величины мы получим п различных ее значений. Наиболее близким к истинному значению измеряемой величины будет среднее арифметическое значение всех измерений.
      Если обозначить отдельные измерения через а, az, a3, ..ап, то среднеарифметическое значение измеряемой величины определится по формуле:
      п
      п – at + аг + • – • + Д„ _1 а,-
      а _ ——————
      =Y-^
      ^J П
      Значения отдельных измерений отличаются от среднеарифметического значения а0 на следующие величины:
      Абсолютные значения разностей (Да^ Даг. ) между средним арифметическим значением измеряемой величины и величиной отдельных измерений называют абсолютными погрешностями отдельных измерений. Среднее арифметическое абсолютных погрешностей всех измерений, которое необходимо для определения относительной погрешности измерений и записи окончательного результата, вычисляется по формуле:
      ^-. (2)
      Эту погрешность называют средней абсолютной погрешностью измерения. Принимая один знак абсолютных погрешностей, мы тем самым сознательно берем наибольшую из возможных погрешностей.

      Что такое среднее арифметическое? Как найти среднее арифметическое?

      Формула среднего арифметического чисел?

      Алекс-89

      Среднее арифметическое нескольких чисел — это сумма этих чисел, делённая на их количество.

      x ср — среднее арифметическое

      n — количество чисел.

      Например, нам нужно найти среднее арифметическое чисел 3, 4, 5 и 6.

      Для этого нам нужно их сложить и полученную сумму разделить на 4:

      (3 + 4 + 5 + 6) : 4 = 18 : 4 = 4,5.

      Алсу – ш

      Мне, как математику, интересны вопросы по данному предмету.

      Начну с истории вопроса. Над средними величинами задумывались с древних времмен. Среднее арифметическое, среднее геометоическое, среднее гармоническое. Эти понятия предложены в древней Греции пифагорийцами.

      А теперь интересующий нас вопрос. Что же понимается под средним арифметичским нескольких чисел:

      Итак, для нахождения среднего арифметического чисел нужно прибавить все числа и разделить полученную сумму на количество слагаемых.

      Имеет место формула:

      Пример. Найти среднее арифметическое чисел: 100, 175, 325.

      Воспользуемся формулой нахождения среднего арифметического трех чисел (то есть вместо n будет 3; нужно сложить все 3 числа и разделить полученную сумму на их количество, т.е. на 3). Имеем: х=(100+175+325)/3=600/3=200.

      Lady v

      Арифметика считается самым элементарным разделом математики и изучает простые действия с числами. Поэтому и среднее арифметическое также находится очень просто. Начнем с определения. Среднее арифметическое – это величина, которая показывает какое число наиболее близко к истине при нескольких последовательных однотипных действиях. Например при беге на сто метров человек каждый раз показывает разное время, но средняя величина будет в пределах например 12 секунд. Нахождение среднего арифметического таким образом сводится в последовательному суммированию всех чисел определенного ряда (результатов забегов) и деление этой суммы на количество этих забегов (попыток, чисел). В виде формулы это выглядит так:

      Читайте также:  Бесплатная музыка для инстаграм

      Sариф = (Х1+Х2+..+Хn)/n

      Mb78

      Среднее арифметическое – это среднее число между несколькими числами.

      Например между числами 2 и 4 среднее число 3.

      Формула нахождения среднего арифметического такая:

      Нужно сложить все числа и разделить на количество этих чисел:

      Например у нас 3 числа: 2, 5 и 8.

      Находим среднее арифметическое:

      Область применения среднего арифметического достаточно широка.

      Например можно зная координаты двух точек отрезка найти координаты середины этого отрезка.

      Например координаты отрезка: (X1,Y1,Z1)-(X2,Y2,Z2).

      Обозначим середину этого отрезка координатами X3,Y3,Z3.

      Отдельно находим середину для каждой координаты:

      Красивая поляна

      Средне арифметическое число, это числа сложенные вместе и деленные на их количество, полученный ответ и есть средне арифметическое число.

      Например: Катя положила в копилку 50 рублей, Максим 100 рублей, а Саша положил в копилку 150 рублей. 50 + 100 + 150 = 300 рублей в копилке, теперь делим эту сумму на три (три человека положили деньги). Итак 300 : 3 = 100 рублей. Эти 100 рублей и будет средне арифметически, каждый из них положил в копилку.

      Есть такой простой пример: один человек ест мясо, другой человек ест капусту, а средне арифметически они оба едят голубцы.

      Таким же образом рассчитывают среднюю зарплату.

      Simpl

      Среднеарифметическое-это среднее значение из заданных.

      Т.е. по простому имеем количество палочек разной длины и хотим узнать их среднее значение..

      Логично, что для этого мы их сводим вместе, получая длинную палку, а потом делим её на требуемое число частей..

      Вот и выходит среднеарифметическое..

      Вот так и выводится формула:Sa=(S(1)+..S(n))/n..

      Птичка2014

      Среднее арифметическое – это сумма всех значений и деленное на их количество.

      Например числа 2, 3 , 5, 6 . Нужно их сложить 2+ 3+ 5 + 6 = 16

      16 делим на 4 и получаем ответ 4 .

      4 и есть среднее арифметическое этих чисел.

      Azamatik

      Средним арифметическим называют сумму чисел, разделенное на количество этих самых чисел. А найти среднее арифметическое очень просто.

      Как следует из определения мы должны взять числа, сложить их и разделить на их количество.

      Приведем пример: дается числа 1, 3, 5, 7 и нам надо найти среднее арифметическое этих чисел.

      • сначала складываем эти числа (1+3+5+7) и получаем 16
      • полученный результат нам надо разделить на 4 (кол – во): 16/4 и получаем результат 4.

      Итак, среднее арифметическое чисел 1, 3, 5 и 7 – это 4.

      Tana76

      Среднее арифметическое – среднее значение среди заданных показателей.

      Оно находится путем деления суммы всех показателей на их количество.

      Например, у меня есть 5 яблок весом 200, 250, 180, 220 и 230 грамм.

      Средний вес 1 яблока находим так:

      • ищем общий вес всех яблок (сумму всех показателей) – он равен 1080 граммов,
      • делим общий вес на количество яблок 1080:5 = 216 граммов. Это и есть среднее арифметическое.

      Это наиболее часто применяемый в статистике показатель.

      Зеленый чебуречек

      Это мы знаем со школьной скамьи. У кого был хороший учитель по математике, то запомнить это нехитрое действие можно было с первого раза.

      При нахождении среднего арифметического необходимо сложить все имеющиеся числа и разделить на их количество.

      Например, я купила в магазине 1 кг яблок, 2 кг бананов, 3 кг апельсинов и 1 кг киви. Сколько килограммов в среднем я купила фруктов.

      7/4= 1,8 килограммов. Это и будет среднеарифметическим значением.

      Бьемон эпу

      Помню как итоговую контрольную по математике сдавал

      Так там нужно было среднее арифметическое найти.

      Хорошо что добрые люди подсказали что делать, иначе беда.

      Например у нас 4 числа.

      Складываем числа и делим на их количество (в данном случае 4)

      Например цифры 2,6,1,1. Складываем 2+6+1+1 и делим на 4 = 2.5

      Как видите ничего сложного. Так что среднее арифметическая – это среднее значение всех чисел.

      Читайте также:

      1. Величины геотермических градиентов (числитель – пределы, знаменатель – среднее) в нефтегазоносных регионах
      2. Гармоническое среднее значение
      3. Геометрическое среднее значение
      4. Дисперсия и среднее квадратическое отклонение
      5. Загрузка – это среднее число заявок, приходящих за среднее время обслуживания одной заявки.
      6. Квадратическое среднее значение
      7. Лекция 7. Системы линейных уравнений. Арифметическое n-мерное векторное пространство. Метод Гаусса. Правило Крамера.
      8. Особенности перехода в среднее звено обучения
      9. Параметр называется коэффициентом регрессии. Его величина показывает среднее изменение результата с изменением фактора на одну единицу.
      10. Понятие о показателях вариации. Дисперсия и среднее квадратическое отклонение: методы расчета.
      11. Размах вариации. Среднее линейное отклонение
      12. Скользящее Среднее (Moving Average, MA).

      Среднее арифметическое ряда из n числовых значений Х1, Х2, . Хn обозначается X i подсчитывается как:

      Здесь величины 1, 2. n являются так называемыми индексами. В том случае, если отдельные значения выборки повторяются, среднюю арифметическую вычисляют по формуле:

      X в таком случае называют взвешенной средней, где fi – частоты повторяющихся значений.

      Знак ∑ является символом операции суммирования. Он означает, что все значения Xi должны быть просуммированы. Числа, стоящие над k и под i знаком называются пределами суммирования и указывают наибольшее и наименьшее значения индекса суммирования, между которыми расположены его промежуточные значения.

      Например, в формуле (4.1) суммирование начинается с первого элемента выборки, поэтому и пишется так: i = 1, и заканчивается последним, поэтому наверху символа суммирования стоит величина n.

      Если же мы запишем так:

      то, поскольку нижний индекс суммирования i равен 4, а верхний равен 6, то будут просуммированы следующие элементы ряда х4, х5 и х6, и в результате будет получено: х4 + х5 + х6. Или, если будет написано следующее выражение:

      то, поскольку нижний индекс суммирования i равен 1, а верхний равен 3, то будут просуммированы следующие элементы ряда х1, х2и х3, и в итоге будет получено: х1 + х2 + х3.

      Дата добавления: 2014-12-27 ; Просмотров: 865 ; Нарушение авторских прав? ;

      Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

      admin

      Добавить комментарий

      Ваш e-mail не будет опубликован. Обязательные поля помечены *