0

Знаки пересечения и объединения в математике

Разделы: Математика

Цели урока:

  • образовательные: формирование умений выделять множества, подмножества; формирование навыков находить на изображениях область пересечения и объединения множеств и называть элементы из этой области, решать задачи;
  • развивающие: развитие познавательного интереса учащихся; развитие интеллектуальной сферы личности, развитие умений сравнивать и обобщать.
  • воспитательные: воспитывать аккуратность и внимательность при решении.

Ход урока.

1. Организационный момент.

2. Учитель сообщает тему урока, совместно с учащимися формулирует цели и задачи.

3. Учитель совместно с учащимися вспоминает материал, изученный по теме «Множества» в 7 классе, вводит новые понятия и определения, формулы для решения задач.

«Множество есть многое, мыслимое нами как единое» (основатель теории множеств – Георг Кантор). КАНТОР (Cantor) Георг (1845—1918) — немецкий математик, логик, теолог, создатель теории трансфинитных (бесконечных) множеств, оказавшей определяющее влияние на развитие математических наук на рубеже 19— 20 вв.

Множество – одно из основных понятий современной математики, используемое почти во всех её разделах.

К сожалению, основному понятию теории – понятию множества – нельзя дать строгого определения. Разумеется, можно сказать, что множество – это «совокупность», «собрание», «ансамбль», «коллекция», «семейство», «система», «класс» и т. д. однако всё это было бы не математическим определением, а скорее злоупотреблением словарным богатством русского языка.

Для того чтобы определить какое – либо понятие, нужно, прежде всего, указать, частным случаем какого более общего понятия, оно является, для понятия множества сделать это невозможно, потому что более общего понятия, чем множество, в математике нет.

Часто приходится говорить о нескольких вещах, объединенных некоторым признаком. Так, можно говорить о множестве всех стульев в комнате, о множестве всех клеток человеческого тела, о множестве всех картофелин в данном мешке, о множестве всех рыб в океане, о множестве всех квадратов на плоскости, о множестве всех точек на данной окружности т. д.

Предметы, составляющие данное множество, называются его элементами.

Например, множество дней недели состоит из элементов: понедельник, вторник, среда, четверг, пятница, суббота, воскресенье.

Множество месяцев – из элементов: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь.

Множество арифметических действий – из элементов: сложение, вычитание, умножение, деление.

Например, если А означает множество всех натуральных чисел, то 6 принадлежит к А, а 3 не принадлежит к А.

Если А – множество всех месяцев в году, то май принадлежит к А, а среда не принадлежит к А.

Если множество содержит конечное число элементов, то его называют конечным, а если в нем бесконечно много элементов, то бесконечным. Так множество деревьев в лесу конечно, а множество точек на окружности бесконечно.

Парадокс в логике — это противоречие, имеющее статус логически корректного вывода и, вместе с тем, представляющее собой рассуждение, приводящее к взаимно исключающим заключениям.

Как уже упоминалось, понятие множества лежит в основе математики. Используя простейшие множества и различные математические конструкции, можно построить практически любой математический объект. Идею построения всей математики на основе теории множеств активно пропагандировал Г.Кантор. Однако, при всей своей простоте, понятие множества таит в себе опасность появления противоречий или, как ещё говорят, парадоксов. Появление парадоксов связано с тем, что далеко не всякие конструкции и не всякие множества можно рассматривать.

Самый простой из парадоксов – это "парадокс брадобрея".

Одному солдату было приказано брить тех и только тех солдат его взвода, которые сами себя не бреют. Неисполнение приказа в армии, как известно, тягчайшее преступление. Однако возник вопрос, брить ли этому солдату самого себя. Если он побреется, то его следует отнести к множеству солдат, которые сами себя бреют, а таких брить он не имеет права. Если же он себя брить не будет, то попадёт во множество солдат, которые сами себя не бреют, а таких солдат согласно приказу он обязан брить. Парадокс.

Над множествами, как и над многими другими математическими объектами, можно совершать различные операции, которые иногда называют теоретико-множественными операциями или сет-операциями. В результате операций из исходных множеств получаются новые. Множества обозначаются заглавными латинскими буквами, а их элементы – строчными. Запись aR означает, что элемент а принадлежит множеству R , то есть а является элементом множества R . В противном случае, когда а не принадлежит множеству R , пишут aR .

Два множества А и В называются равными ( А = В ), если они состоят из одних и тех же элементов, то есть каждый элемент множества А является элементом множества В и наоборот, каждый элемент множества В является элементом множества А .

Сравнение множеств.

Множество A содержится во множестве B (множество B включает множество A), если каждый элемент A есть элемент В:

Говорят, что множество А содержится в множестве В или множество Аявляется подмножеством множества В ( в этом случае пишут А В ), если каждый элемент множества А одновременно является элементом множества В . Эта зависимость между множествами называется включением. Для любого множества А имеют место включения: ØА и А А

В этом случае A называется подмножеством B, Bнадмножеством A. Если , то A называется собственным подмножеством В. Заметим, что ,

По определению ,

Два множества называются равными, если они являются подмножествами друг друга

Читайте также:  Все про яндекс деньги

Операции над множествами

Пересечение.

Объединение.

Свойства.

1.Операция объединения множеств коммутативна

2.Операция объединения множеств транзитивна

3. Пустое множество X является нейтральным элементом операции объединения множеств

1. Пусть A = <1,2,3,4>,B = <3,4,5,6,7>. Тогда

2. А=<2,4,6,8,10>, В = <3,6,9,12>. Найдём объединение и пересечение этих множеств:

<2,4,6,8, 10,3,6,9,12>, = <6>.

3. Множество детей является подмножеством всего населения

4. Пересечением множества целых чисел с множеством положительных чисел является множество натуральных чисел.

5. Объединением множества рациональных чисел с множеством иррациональных чисел является множество положительных чисел.

6.Нуль является дополнением множества натуральных чисел относительно множества неотрицательных целых чисел.

Диаграммы Венна (Venn diagrams) — общее название целого ряда методов визуализации и способов графической иллюстрации, широко используемых в различных областях науки и математики: теория множеств, собственно «диаграмма Венна» показывает все возможные отношения между множествами или событиями из некоторого семейства; разновидностями диаграмм Венна служат: диаграммы Эйлера,

Диаграмма Венна четырёх множеств.

Собственно «диаграмма Венна» показывает все возможные отношения между множествами или событиями из некоторого семейства. Обычная диаграмма Венна имеет три множества. Сам Венн пытался найти изящный способ с симметричными фигурами, представляющий на диаграмме большее число множеств, но он смог это сделать только для четырех множеств (см. рисунок справа), используя эллипсы.

Диаграммы Эйлера

Диаграммы Эйлера аналогичны диаграммам Венна. Диаграммы Эйлера можно использовать, для того, чтобы оценивать правдоподобность теоретико-множественных тождеств.

Задача 1. В классе 30 человек, каждый из которых поёт или танцует. Известно, что поют 17 человек, а танцевать умеют 19 человек. Сколько человек поёт и танцует одновременно?

Решение: Сначала заметим, что из 30 человек не умеют петь 30 – 17 = 13 человек.

Все они умеют танцевать, т.к. по условию каждый ученик класса поёт или танцует. Всего умеют танцевать 19 человек, из них 13 не умеют петь, значит, танцевать и петь одновременно умеют 19-13 = 6 человек.

Задачи на пересечение и объединение множеств.

  1. Даны множества А = <3,5, 0, 11, 12, 19>, В = <2,4, 8, 12, 18,0>.
    Найдите множества AU В,
  2. Составьте не менее семи слов, буквы которых образуют подмножества множества
    А -<к,а,р,у,с,е,л,ь>.
  3. Пусть A – это множество натуральных чисел, делящихся на 2, а В – множество натуральных чисел, делящихся на 4. Какой вывод можно сделать относительно данных множеств?
  4. На фирме работают 67 человек. Из них 47 знают английский язык, 35 – немецкий язык, а 23 – оба языка. Сколько человек фирмы не знают ни английского, ни немецкого языков?
  5. Из 40 учащихся нашего класса 32 любят молоко, 21 – ли­монад, а 15 – и молоко, и лимонад. Сколько ребят в нашем классе не любят ни молоко, ни лимонад?
  6. 12 моих одноклассников любят читать детективы, 18 -фантастику, трое с удовольствием читают и то, и другое, а один вообще ничего не читает. Сколько учеников в нашем классе?
  7. Из тех 18 моих одноклассников, которые любят смотреть триллеры, только 12 не прочь посмотреть и мультфильмы. Сколько моих одноклассников смотрят одни «мультики», если всего в на­шем классе 25 учеников, каждый из которых любит смотреть или триллеры, или мультфильмы, или и то и другое?
  8. Из 29 мальчишек нашего двора только двое не занимают­ся спортом, а остальные посещают футбольную или теннисную секции, а то и обе. Футболом занимается 17 мальчишек, а тенни­сом – 19. Сколько футболистов играет в теннис? Сколько тенниси­стов играет в футбол?
  9. 65 % бабушкиных кроликов любят морковку, 10 % любят и морковку, и капусту. Сколько процентов кроликов не прочь по­лакомиться капустой?
  10. В одном классе 25 учеников. Из них 7 любят груши, 11 -черешню. Двое любят груши и черешню; 6 – груши и яблоки; 5 -яблоки и черешню. Но есть в классе два ученика, которые любят все и четверо таких, что не любят фруктов вообще. Сколько учени­ков этого класса любят яблоки?
  11. В конкурсе красоты участвовали 22 девушки. Из них 10 было красивых, 12 -умных и 9 -добрых. Только 2 девушки были и красивыми, и умными; 6 девушек были умными и одновременно добрыми. Определите, сколько было красивых и в то же время до­брых девушек, если я скажу вам, что среди участниц не оказалось ни одной умной, доброй и вместе с тем красивой девушки?
  12. В нашем классе 35 учеников. За первую четверть пятерки по русскому языку имели 14 учеников; по математике – 12; по ис­тории – 23. По русскому и математике – 4; по математике и исто­рии – 9; по русскому языку и истории – 5. Сколько учеников имеют пятерки по всем трем предметам, если в классе нет ни одного ученика, не имеющего пятерки хотя бы по одному из этих предметов?
  13. Из 100 человек 85 знают английский язык, 80 – испан­ский, 75 – немецкий. Все владеют, по крайней мере, одним ино­странным языком. Среди них нет таких, которые знают два ино­странных языка, но есть владеющие тремя языками. Сколько человек из этих 100 знают три языка?
  14. Из сотрудников фирмы 16 побывали во Франции, 10 -в Италии, 6 – в Англии; в Англии и Италии – 5; в Англии и Фран­ции – 6; во всех трех странах – 5 сотрудников. Сколько человек посетили и Италию, и Францию, если всего в фирме работают 19 человек, и каждый из них побывал хотя бы в одной из названных стран?

Таблица обозначений абстрактной алгебры — В абстрактной алгебре повсеместно используются символы для упрощения и сокращения текста, а также стандартные обозначения для некоторых групп. Ниже приведён список наиболее часто встречающихся алгебраических обозначений, соответствующие команды в … Википедия

Читайте также:  Жесткий диск формат raw как исправить

История математических обозначений — Математические обозначения это символы, используемые для компактной записи математических уравнений и формул[1]. Помимо цифр и букв различных алфавитов (латинского, в том числе в готическом начертании, греческого и еврейского),… … Википедия

Список математических аббревиатур — Статья содержит список общеупотребительных аббревиатур математических функций, операторов и др. математических терминов. Содержание 1 Аббревиатуры 1.1 Латиница 1.2 Греческий алфавит … Википедия

Набор символов Юникод — Юникод, или Уникод (англ. Unicode) стандарт кодирования символов, позволяющий представить знаки практически всех письменных языков. Стандарт предложен в 1991 году некоммерческой организацией «Консорциум Юникода» (англ. Unicode Consortium,… … Википедия

Математические обозначения — Список используемых в математике специфических символов можно увидеть в статье Таблица математических символов Математические обозначения («язык математики») сложная графическая система обозначений, служащая для изложения абстрактных… … Википедия

Знак плюс-минус — У этого термина существуют и другие значения, см. Плюс минус (значения). ± ∓ Знак плюс минус (±) математический символ, который ставится перед некоторым выражением и означает, что значение этого выражения может быть как положительным, так и … Википедия

Список обозначений в физике — Необходимо проверить качество перевода и привести статью в соответствие со стилистическими правилами Википедии. Вы можете помочь … Википедия

Знаки операций — или математические символы знаки, которые символизируют определённые математические действия со своими аргументами. К самым распространённым относятся: Плюс: + Минус: , − Знак умножения: ×, ∙ Знак деления: :, ∕, ÷ Знак возведения в… … Википедия

Знаки опеций — Знаки операций или математические символы знаки, которые символизируют определённые математические действия со своими аргументами. К самым распространённым относятся: Плюс: + Минус: , − Знак умножения: ×, ∙ Знак деления: :, ∕, ÷ Знак возведения… … Википедия

Знаки операторов — Знаки операций или математические символы знаки, которые символизируют определённые математические действия со своими аргументами. К самым распространённым относятся: Плюс: + Минус: , − Знак умножения: ×, ∙ Знак деления: :, ∕, ÷ Знак возведения… … Википедия

В результате математических операций над множествами из исходных множеств получается новое множество, причем этот результат однозначен. Примерами таких операций являются пересечение и объединение множеств. Эти операции производятся по определенным правилам, о которых пойдет речь ниже.

Объединение двух множеств представляет собой совокупность таких элементов, что каждый из них является элементом одного из исходных множеств. Пересечение же множеств состоит из всех элементов, общих для исходных множеств.

Обозначения множеств. Знаки объединения и пересечения множеств

Для обозначения множеств применяется специальная система символов. Самый простой способ описать множество – использование фигурных скобок, внутри которых элементы перечисляются через запятую:

Недостатком такой записи является то, что с ее помощью задать множество можно только если оно содержит конечное и не слишком большое количество элементов. Поэтому чаще используется универсальный способ определения множеств – с помощью характеристического свойства, т.е. такого, которое присуще всем его элементам множества, и которым не обладают объекты вне множества:

Попробуй обратиться за помощью к преподавателям

где $P(x)$ — характеристическое свойство.

В такой форме объединение записывается как

а пересечение как

Знаки $vee$ и $wedge$ обозначают, соответственно, "или" и "и". Знак $|$ читается как "таких, что".

Для обозначения множеств как числовых интервалов используются круглые и квадратные скобки. Например, запись $[4, 24)$ означает, диапазон чисел от $4$ до $24$, причем число $4$ в это множество входит, а $24$ нет, хотя любое число меньше $24$ этому множеству принадлежит.

Для графического выражения операций пересечения и объединения применяются знаки пересечения и объединения множеств:

  • $A cup B$ – объединение множеств $A$ и $B$$;;
  • $A cap B$ – пересечение множеств $A$ и $B$$..

Для мнемонического запоминания этих знаков можно представить, что знак объединения $cup$ похож на емкость с открытым верхом, куда можно что-то складывать. Знак пересечения $cap$, напротив, представляет собой как бы перевернутый стакан, препятствующий проникновению внутрь неподходящих элементов.

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Правила нахождения пересечений и объединений

Правила для нахождения пересечений и объединений множеств заключаются в следующем:

  • для составления объединения числовых множеств нужно записать все элементы одного множества и к ним дописать недостающие элементы из остальных;
  • для составления пересечения числовых множеств, надо последовательно брать элементы одного множества и проверять, принадлежат ли они другим исследуемым множествам; те, которые принадлежат, и будут составлять пересечение.

Найдем объединение числовых множеств $A = <3, 5, 7, 14>$ и $B = <2, 5, 8, 11, 12, 13>$. К элементам множества $A$ $3, 5, 7, 14$ добавляем недостающие элементы множества $B$ $2, 8, 11, 13$. Результирующее множество будет выглядеть как $<3, 5, 7, 14, 2, 8, 11, 13>$. Это можно записать как

Для нахождения пересечения этих же множеств, последовательно проверим элементы $A$ на их наличие внутри $B$. Так, элемент $3$ не принадлежит множеству $B$, значит он не войдет в состав пересечения. Число $5$ из $A$ принадлежит и $B$, а значит и пересечению.Число $7$ не принадлежит $B$ и пересечению, а число 14 принадлежит. Таким образом, пересечение $A = <3, 5, 7, 14>$ и $B = <2, 5, 8, 11, 14, 13>$ состоит из элементов $5$ и $14$. Это записывается как:

Пересечение и объединение большего, чем 2 количества множеств сводится к последовательному нахождению пересечений и объединений: чтобы найти пересечение трех множеств $A$, $B$ и $C$ сначала находят пересечение $A$ и $B$, затем пересечение результирующего множества с $C$. Так, пересечение числовых множеств $A = <3, 6, 4, 3, 55, 21>$, $B = <2, 7, 6, 21>$ и $C = <7, 6, 17, 3>$ можно найти поэтапно. Сначала находим, что $A cap B = <6, 21>$, затем полученное множество сравниваем с $C$ (это $<6>$). Получаем, что

Читайте также:  Из за чего может не включаться ноутбук

Метод нахождения объединений более двух множеств заключается в том, что к числам первого множества добавляют недостающие элементы из второго, затем недостающие из третьего и т.д. Например, если есть $A = <1, 4>$, $B = <4, 3>$ и $C = <1, 3, 6, 7>$, то к числам $1$ и $4$ из $A$ следует добавить число $3$ из $B$, а к полученному множеству $<1, 3, 4>$ нужно добавить $6$ и $7$ из $C$. В результате получаем объединение

Для нахождения пересечения нескольких конечных множеств, нужно перебрать числа первого из них и выяснить, принадлежит ли текущий элемент каждому из рассматриваемых множеств. Если это условие не соблюдается, он не принадлежит пересечению. В качестве проверочного (элементы которого перебираются) следует выбирать множество с наименьшим числом элементов.

Рассмотрим множества $A = <1, 3, 7, 12, 5, 2>$, $B = <0, 1, 2, 12>$, $C = <1, 2, 6, 7, 11>$ и $D = <1, 2, 6, 7, 8, 15>$. Для поиска перебором задействуем $B$ как самое короткое. Элемент множества $B$ $0$ не входит в состав $A$, следовательно, в состав пересечения не войдет. Число $1$ входит в состав $A$, $C$ и $D$. Оно входит в состав их общего пересечения. Число $2$, принадлежащее $B$, входит в состав всех остальных множеств, т.е. входит в состав пересечения. Четвертый элемент проверяемого множества $12$ не входит в состав $D$ и в пересечение не войдет. Таким образом, найденное пересечение выглядит как

$A cap B cap C cap D = <1, 2>$.

Исследование множеств с помощью координатной прямой

Исследовать и выражать пересечения и объединения числовых множеств удобно с помощью координатной прямой и выделяемых на ней числовых промежутков. Любая выбранная точка разбивает все расположенные на такой прямой числа на два открытых числовых луча. Например, точка с координатой $36,6$ создаст промежутки, записываемые как $(−∞, 36,6)$, $(36,6, +∞)$. Сама точка не входит в состав ни одного из них, поэтому числовая прямая, представляющая собой множество всех действительных чисел $R = (−∞, +∞)$, представляет собой в данном случае объединение $ (−∞, −36,6) cup <36,6>cup (36,6, +∞)$.

Если рассматриваемую точку со значением $36,6$ добавить к одному из открытых числовых лучей, т.е. промежутку $(−∞, 36,6)$ или $(36,6, +∞)$, то такой промежуток перестанет быть открытым. Это записывается как $(−∞, 36,6]$ или $[36,6, +∞)$, т.е. вхождение граничного числа в состав числового луча обозначается квадратной скобкой. Множество действительных чисел $R$ в этом случае будет выглядеть как

$(−∞, 36,6] cup (36,6, +∞)$ либо $(−∞, 36,6) cup [36,6, +∞)$.

Если разбить числовую прямую на части не точкой, а отрезком или лучом, то все рассмотренные закономерности будут соблюдаться и в этих случаях. Более того, они соблюдаются и при разбиении самих числовых промежутков (отрезков, лучей). Например, точка с координатой $14$ на промежутке $(5, 51]$ разобьет его на промежутки $(5, 14) ∪ <14>∪ (14, 51]$. Включив точку в один из промежутков, можно получить такие записи, как $(5, 14] cup (14, 51]$, $(5, 14) cup [14, 51]$. Приняв за разбивающую точку число $51$, ограничивающее рассматриваемый промежуток справа и входящее в его состав, получим объединение множества $<51>$ и интервала $(5, 51)$, т.е. $(5, 51] = (5, 51) cup <51>$.

Подобные закономерности справедливы и в случаях, когда координатная прямая разбивается на промежутки несколькими точками. Например, числа $−6$, $0$ и $7$ разобьют ее на промежутки $(−∞, −6)$, $(−6, 0)$, $(0, 7)$, $(7, +∞)$, а множество действительных чисел $R$ будет представлено как $(−∞, −6) ∪ <−6>∪ (−6, 0) ∪ <0>∪ (0, 7) ∪ <7>∪ (7, +∞)$.

С помощью координатной прямой удобно анализировать пересечения и объединения множеств. Они изображаются друг под другом на координатных прямых с совпадающими точками и направлениями отсчета. Для отображения объединения множеств координатные прямые отмечают слева квадратной скобкой, для обозначения пересечения используется фигурная скобка.

На дополнительной координатной прямой, размещаемой под исходными, изображаются искомые пересечение или объединение. На ней все граничные точки исходных множеств отмечают поперечными чертами, а после уточнения – полыми или сплошными точками. Графически вхождение промежутка в пересечение или объединение изображается штриховкой, вхождение точки – сплошной точкой, невхождение – полой.

Пересечение множеств $A$ и $B$ графически отображается промежутками, над которыми есть штриховка, с добавлением отдельных точек, принадлежащих обоим множествам. Объединение графически проявляется там, где есть штриховка хотя бы у одного из множеств, а также всех сплошных точек.

Найти пересечение и объединение множеств $A = [-3, 4)$ и $B = [0, 7)$ .

Для решения применим графический метод:

Рисунок 1. Графическое решение задачи. Автор24 — интернет-биржа студенческих работ

Видно, что объединение множеств представляет собой диапазон от крайней левой точки $-3$ включительно до крайней правой $7$ исключая ее. Пересечение множеств начинается от числа $0$. Оно входит в оба множества и ограничивает пересечение слева. Правой границей пересечения является $4$, но оно не входит в первое множество, поэтому здесь граница интервала будет открытой.

Ответ:

$A cap B = [0, 4); A cup B = [-3, 7); $

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *