0

Диф уравнения с разделяющимися переменными примеры

Определение

Дифференциальное уравнение вида:$$ f_1(x)g_1(y)dy=f_2(x)g_2(y)dx $$называют дифференциальным уравнением 1-го порядка с разделяющимися переменными. В данном разделе математики эти уравнения самые лёгкие в решении.

Формула

Для решения существует универсальный алгоритм:

  1. Суть его состоит в том, чтобы обе части ду разделить на произведение функций, зависящих от разных переменных: $$ f_1(x)g_2(y) $$
  2. Таким образом мы приводим исходное уравнение, заданное по условию, к виду: $$ fracdy = fracdx $$
  3. Далее необходимо проинтегрировать обе части уравнения, из которых мы получим функцию y(x): $$ int fracdy = int fracdx $$

Примеры решений

Решение как всегда начнем с анализа типа дифференциального уравнения. Данное уравнение попадает под определение ДУ первого порядка с разделяющимися переменными. А значит, начнем действовать по алгоритму решения. Распишем подробно: $$ y’ = frac $$

Далее разделим обе части уравнения на произведение двух функций: $$ y(x^2+9) $$

Возьмем интеграл от обеих частей последнего равенства:$$ int frac = int frac<4xdx> $$

Используя формулы и методы интегрирования, получаем: $$ ln|y| = 2 int frac $$

Общее решение: $$ y = C cdot (x^2+9)^2, C = const $$

Как видим ответ легко получен и записан в последней строчке.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Пример 1
Решить уравнение: $$ (x^2+9)y’=4xy $$
Решение
Ответ
$$ y = C cdot (x^2+9)^2, C = const $$

Перенесем первое слагагаемое, содержащее dx в правую часть для удобства решения:

Разделим обе части на выражение: $$ sqrt <1-x^2>cdot sqrt <1-y^2>$$

Как положено алгоритмом возьмем интегралы: $$ int frac <1-y^2>= – int frac <1-x^2>$$

Искомое решение: $$ 1-y^2 = frac <1-x^2>$$

Получаем ответ, в виде: $$ 1-y^2 = frac <1-x^2>$$

Пример 2
Решить ДУ первого порядка с разделяющимися переменными: $$ xsqrt<1-y^2>dx + ysqrt<1-x^2>dy=0 $$
Решение
Ответ
$$ y_ <1,2>= pm sqrt<1-frac<1-x^2>> $$
Пример 3
Решить ДУ 1-го порядка разделяя переменные: $$ cos^2xdy=sin^2ydx $$
Решение
Ответ
$$ y = arcctg(-tgx+C) $$

Решать начнем с того, что воспользуемся свойством:$$ e^ = e^x cdot e^y $$

Получаем, $$ y’e^xcdot e^y = 1 $$

Разделяем переменные, $$ e^y dy=frac $$

Спокойно интегрируем уравнение, $$ int e^y dy= int frac $$

Отсюда ответ, $$ y=ln(-e^<-x>+C) $$

Пример 4
Найти общее решение ДУ с разделяющимися переменными: $$ y’e^=1 $$
Решение
Ответ
$$ y=ln(-e^<-x>+C) $$

Найдем для начала общее решение ДУ: $$ frac=frac $$

Отсюда получается общее решение: $$ y = frac<1><frac<1>+C> $$

Решить задачу Коши это значит, найти постоянную $ С $ из дополнительного условия $ y(1)=1 $. Чтобы это проделать нужно подставить в общее решение $ x = 1 $ и $ y = 1 $.

Теперь, подставляя найденное $ С = 0 $ в общее решение, записываем ответ: $$ y = x $$

Дифференциальные уравнения, в которых переменные уже разделены

Дифференциальные уравнения, в которых выражение, зависящее от y, входит только в левую часть, а выражение, зависящее от x – только в правую часть, это дифференциальные уравнения с разделяющимися переменными, в которых переменные уже разделены.

В левой части уравнения может находиться производная от игрека и в этом случае решением дифференциального уравнения будет функция игрек, выраженная через значение интеграла от правой части уравнения. Пример такого уравнения – .

В левой части уравнения может быть и дифференциал функции от игрека и тогда для получения решения уравнения следует проинтегрировать обе части уравнения. Пример такого уравнения – .

Пример 1. Найти общее решение дифференциального уравнения

Решение. Пример очень простой. Непосредственно находим функцию по её производной, интегрируя:

Таким образом, получили функцию – решение данного уравнения.

Пример 2. Найти общее решение дифференциального уравнения

Решение. Интегрируем обе части уравнения:

.

Функция – решение уравнения – получена. Как видим, нужно только уверенно знать табличные интегралы и неплохо расправляться с дробями и корнями.

Дифференциальные уравнения, в которых требуется разделить переменные

Дифференциальные уравнения с разделяющимися переменными, в которых требуется разделить переменные, имеют вид

.

В таком уравнении и – функции только переменной x, а и – функции только переменной y.

Поделив члены уравнения на произведение , после сокращения получим

.

Как видим, левая часть уравнения зависит только от x, а правая только от y, то есть переменные разделены.

Левая часть полученного уравнения – дифференциал некоторой функции переменной x, а правая часть – дифференциал некоторой функции переменной y. Для получения решения исходного дифференциального уравнения следует интегрировать обе части уравнения. При этом при разделении переменных не обязательно переносить один его член в правую часть, можно почленно интегрировать без такого переноса.

Пример 3. Найти общее решение дифференциального уравнения

.

Это уравнение с разделяющимися переменными. Решение. Для разделения переменных поделим уравнение почленно на произведение и получим

.

,

или ,

поскольку левая часть равенства есть сумма арифметических значений корней. Таким образом, получили общий интеграл данного уравнения. Выразим из него y и найдём общее решение уравнения:

.

Есть задачи, в которых для разделения переменных уравнение нужно не делить почленно на произведение некоторых функций, а почленно умножать. Таков следующий пример.

Пример 4. Найти общее решение дифференциального уравнения

.

Решение. Бывает, что забвение элементарной (школьной) математики мешает даже близко подойти к началу решения, задача выглядит абсолютно тупиковой. В нашем примере для начала всего-то нужно вспомнить свойства степеней.

Так как , то перепишем данное уравнение в виде

.

Это уже уравнение с разделяющимися переменными. Умножив его почленно на произведение , получаем

.

Первый интеграл находим интегрированием по частям, а второй – табличный. Следовательно,

.

Логарифимруя обе части равенства, получаем общее решение уравнения:

.

Решить примеры самостоятельно, а затем посмотреть правильные решения

Пример 5. Найти общее решение диффференциального уравнения

.

Пример 6. Найти общее решение диффференциального уравнения

.

Продолжаем решать примеры вместе

Пример 7. Найти общее решение дифференциального уравнения

.

Это уравнение с разделяющимися переменными. Решение. Для разделения переменных поделим уравнение почленно на и получим

.

Чтобы найти y, требуется найти интеграл. Интегрируем по частям.

Пусть , .

Тогда , .

Находим общее решение уравнения:

Пример 8. Найти частное решение дифференциального уравнения

,

удовлетворяющее условию .

Это уравнение с разделяющимися переменными. Решение. Для разделения переменных поделим уравнение почленно на и получим


или
.

Записываем производную y в виде и получаем

Разделяем dy и dx и получаем уравнение:

, которое почленно интегрируя:

,

находим общее решение уравнения:

.

Чтобы найти частное решение уравнения, подставляем в общее решение значения y и x из начального условия:

.

Таким образом частное решение данного дифференциального уравнения:

.

В некоторых случаях ответ (функцию) можно выразить явно. Для этого следует воспользоваться тем свойством логарифма, что сумма логарифмов равна логарифму произведения логарифмируемых выражений. Обычно это следует делать в тех случаях, когда слева искомая функция под логарифмом находится вместе с каким-нибудь слагаемым. Рассмотрим два таких примера.

Пример 9. Найти общее решение дифференциального уравнения

.

Это уравнение с разделяющимися переменными. Решение. Для разделения переменных запишем производную "игрека" в виде и получим

.

Разделяем "игреки" и "иксы":

.

Почленно интегрируем и, так как в левой части "игрек" присутствует со слагаемым, в правой части константу интегрирования записываем также под знаком логарифма:

.

Теперь по свойству логарифма имеем

.

Находим общее решение уравнения:

Пример 10. Найти частное решение дифференциального уравнения

,

удовлетворяющее условию .

Это уравнение с разделяющимися переменными. Решение. Для разделения переменных поделим уравнение почленно на и получим


или
.

Разделяем dy и dx и получаем уравнение:


которое почленно интегрируя:

находим общее решение уравнения:

.

Чтобы найти частное решение уравнения, подставляем в общее решение значения y и x из начального условия:

.

Таким образом частное решение данного дифференциального уравнения:

.

Выводы. В дифференциальных уравнениях с разделяющимися переменными, как в тех, в которых переменные уже разделены, так и в тех, где переменные требуется разделить, существуют однозначные способы решения, на основе которых может быть построен простой алгоритм. Если недостаточно уверенно освоен материал по нахождению производной и решению интегралов, то требуется его повторить. Во многих задачах на путь к решению уравнения наводят знания и приёмы из элементарной (школьной) математики.

В целом ряде обыкновенных ДУ 1 -го порядка существуют такие, в которых переменные х и у можно разнести в правую и левую части записи уравнения. Переменные могут быть уже разделены, как это можно видеть в уравнении f ( y ) d y = g ( x ) d x . Разделить переменные в ОДУ f 1 ( y ) · g 1 ( x ) d y = f 2 ( y ) · g 2 ( x ) d x можно путем проведения преобразований. Чаще всего для получения уравнений с разделяющимися переменными применяется метод введения новых переменных.

В этой теме мы подробно разберем метод решения уравнений с разделенными переменными. Рассмотрим уравнения с разделяющимися переменными и ДУ, которые можно свести к уравнениям с разделяющимися переменными. В разделе мы разобрали большое количество задач по теме с подробным разбором решения.

Для того, чтобы облегчить себе усвоение темы, рекомендуем ознакомиться с информацией, которая размещена на странице «Основные определения и понятия теории дифференциальных уравнений».

Дифференциальные уравнения с разделенными переменными f ( y ) d y = g ( x ) d x

Уравнениями с разделенными переменными называют ДУ вида f ( y ) d y = g ( x ) d x . Как следует из названия, переменные, входящие в состав выражения, находятся по обе стороны от знака равенства.

Договоримся, что функции f ( y ) и g ( x ) мы будем считать непрерывными.

Для уравнений с разделенными переменными общий интеграл будет иметь вид ∫ f ( y ) d y = ∫ g ( x ) d x . Общее решение ДУ в виде неявно заданной функции Ф ( x , y ) = 0 мы можем получить при условии, что интегралы из приведенного равенства выражаются в элементарных функциях. В ряде случаев выразить функцию у получается и в явном виде.

Найдите общее решение дифференциального уравнения с разделенными переменными y 2 3 d y = sin x d x .

Проинтегрируем обе части равенства:

∫ y 2 3 d y = ∫ sin x d x

Это, по сути, и есть общее решение данного ДУ. Фактически, мы свели задачу нахождения общего решения ДУ к задаче нахождения неопределенных интегралов.

Теперь мы можем использовать таблицу первообразных для того, чтобы взять интегралы, которые выражаются в элементарных функциях:

∫ y 2 3 d y = 3 5 y 5 3 + C 1 ∫ sin x d x = – cos x + C 2 ⇒ ∫ y 2 3 d y = ∫ sin x d x ⇔ 3 5 y 3 5 + C 1 = – cos x + C 2
где С 1 и С 2 – произвольные постоянные.

Функция 3 5 y 3 5 + C 1 = – cos x + C 2 задана неявно. Она является общим решением исходного дифференциального уравнения с разделенными переменными. Мы получили ответ и можем не продолжать решение. Однако в рассматриваемом примере искомую функцию можно выразить через аргумент х явно.

3 5 y 5 3 + C 1 ⇒ y = – 5 3 cos x + C 3 5 , где C = 5 3 ( C 2 – C 1 )

Общим решением данного ДУ является функция y = – 5 3 cos x + C 3 5

Ответ:

Мы можем записать ответ несколькими способами: ∫ y 2 3 d y = ∫ sin x d x или 3 5 y 5 3 + C 1 = – cos x + C 2 , или y = – 5 3 cos x + C 3 5

Всегда стоит давать понять преподавателю, что вы наряду с навыками решения дифференциальных уравнений также располагаете умением преобразовывать выражения и брать интегралы. Сделать это просто. Достаточно дать окончательный ответ в виде явной функции или неявно заданной функции Ф ( x , y ) = 0 .

Дифференциальные уравнения с разделяющимися переменными f 1 ( y ) · g 1 ( x ) d y = f 2 ( y ) · g 2 ( x ) d x

y ‘ = d y d x в тех случаях, когда у является функцией аргумента х .

В ДУ f 1 ( y ) · g 1 ( x ) d y = f 2 ( y ) · g 2 ( x ) d x или f 1 ( y ) · g 1 ( x ) · y ‘ = f 2 ( y ) · g 2 ( x ) d x мы можем провести преобразования таким образом, чтобы разделить переменные. Этот вид ДУ носит название ДУ с разделяющимися переменными. Запись соответствующего ДУ с разделенными переменными будет иметь вид f 1 ( y ) f 2 ( y ) d y = g 2 ( x ) g 1 ( x ) d x .

Разделяя переменные, необходимо проводить все преобразования внимательно для того, чтобы избежать ошибок. Полученное и исходное уравнения должны быть эквивалентны друг другу. В качестве проверки можно использовать условие, по которому f 2 ( y ) и g 1 ( x ) не должны обращаться в ноль на интервале интегрирования. Если это условие не выполняется, то есть вероятность, что ы потеряем часть решений.

Найти все решения дифференциального уравнения y ‘ = y · ( x 2 + e x ) .

Мы можем разделить х и у , следовательно, мы имеем дело с ДУ с разделяющимися переменными.

y ‘ = y · ( x 2 + e x ) ⇔ d y d x = y · ( x 2 + e x ) ⇔ d y y = ( x 2 + e x ) d x п р и y ≠ 0

При у = 0 исходное уравнение обращается в тождество: 0 ‘ = 0 · ( x 2 + e x ) ⇔ 0 ≡ 0 . Это позволят нам утверждать, что у = 0 является решением ДУ. Это решение мы могли не учесть при проведении преобразований.

Выполним интегрирование ДУ с разделенными переменными d y y = ( x 2 + e x ) d x :
∫ d y y = ∫ ( x 2 + e x ) d x ∫ d y y = ln y + C 1 ∫ ( x 2 + e x ) d x = x 3 3 + e x + C 2 ⇒ ln y + C 1 = x 3 3 + e x + C 2 ⇒ ln y = x 3 3 + e x + C

Проводя преобразование, мы выполнили замену C 2 – C 1 на С . Решение ДУ имеет вид неявно заданной функции ln y = x 3 3 + e x + C . Эту функцию мы в состоянии выразить явно. Для этого проведем потенцирование полученного равенства:

ln y = x 3 3 + e x + C ⇔ e ln y = e x 3 3 + e x + C ⇔ y = e x 3 3 + e x + C

Ответ: y = e x 3 3 + e x + C , y = 0

Дифференциальные уравнения, сводящиеся к уравнениям с разделяющимися переменными y ‘ = f ( a x + b y ) , a ≠ 0 , b ≠ 0

Для того, чтобы привести обыкновенное ДУ 1 -го порядка y ‘ = f ( a x + b y ) , a ≠ 0 , b ≠ 0 , к уравнению с разделяющимися переменными, необходимо ввести новую переменную z = a x + b y , где z представляет собой функцию аргумента x .

z = a x + b y ⇔ y = 1 b ( z – a x ) ⇒ y ‘ = 1 b ( z ‘ – a ) f ( a x + b y ) = f ( z )

Проводим подстановку и необходимые преобразования:

y ‘ = f ( a x + b y ) ⇔ 1 b ( z ‘ – a ) = f ( z ) ⇔ z ‘ = b f ( z ) + a ⇔ d z b f ( z ) + a = d x , b f ( z ) + a ≠ 0

Найдите общее решение дифференциального уравнения y ‘ = 1 ln ( 2 x + y ) – 2 и частное решение, удовлетворяющее начальному условию y ( 0 ) = e .

Введем переменную z = 2 x + y , получаем:

y = z – 2 x ⇒ y ‘ = z ‘ – 2 ln ( 2 x + y ) = ln z

Результат, который мы получили, подставляем в исходное выражение, проводим преобразование его в ДУ с разделяющимися переменными:

y ‘ = 1 ln ( 2 x + y ) – 2 ⇔ z ‘ – 2 = 1 ln z – 2 ⇔ d z d x = 1 ln z

Проинтегрируем обе части уравнения после разделения переменных:

d z d z = 1 ln z ⇔ ln z d z = d x ⇔ ∫ ln z d z = ∫ d x

Применим метод интегрирования по частям для нахождения интеграла, расположенного в левой части записи уравнения. Интеграл правой части посмотрим в таблице.

∫ ln z d z = u = ln z , d v = d z d u = d z z , v = z = z · ln z – ∫ z d z z = = z · ln z – z + C 1 = z · ( ln z – 1 ) + C 1 ∫ d x = x + C 2

Мы можем утверждать, что z · ( ln z – 1 ) + C 1 = x + C 2 . Теперь, если мы примем, что C = C 2 – C 1 и проведем обратную замену z = 2 x + y , то получим общее решение дифференциального уравнения в виде неявно заданной функции:

( 2 x + y ) · ( ln ( 2 x + y ) – 1 ) = x + C

Теперь примемся за нахождение частного решения, которое должно удовлетворять начальному условию y ( 0 ) = e . Проведем подстановку x = 0 и y ( 0 ) = e в общее решение ДУ и найдем значение константы С .

( 2 · 0 + e ) · ( ln ( 2 · 0 + e ) – 1 ) = 0 + C e · ( ln e – 1 ) = C C = 0

Получаем частное решение:

( 2 x + y ) · ( ln ( 2 x + y ) – 1 ) = x

Так как в условии задачи не был задан интервал, на котором необходимо найти общее решение ДУ, то мы ищем такое решение, которое подходит для всех значений аргумента х , при которых исходное ДУ имеет смысл.

В нашем случае ДУ имеет смысл при ln ( 2 x + y ) ≠ 0 , 2 x + y > 0

Дифференциальные уравнения, сводящиеся к уравнениям с разделяющимися переменными y ‘ = f x y или y ‘ = f y x

Мы можем свести ДУ вида y ‘ = f x y или y ‘ = f y x к дифференциальным уравнениям с разделяющимися переменными путем выполнения замены z = x y или z = y x , где z – функция аргумента x .

Если z = x y , то y = x z и по правилу дифференцирования дроби:

y ‘ = x y ‘ = x ‘ · z – x · z ‘ z 2 = z – x · z ‘ z 2

В этом случае уравнения примут вид z – x · z ‘ z 2 = f ( z ) или z – x · z ‘ z 2 = f 1 z

Если принять z = y x , то y = x ⋅ z и по правилу производной произведения y ‘ = ( x z ) ‘ = x ‘ z + x z ‘ = z + x z ‘ . В этом случае уравнения сведутся к z + x z ‘ = f 1 z или z + x z ‘ = f ( z ) .

Решите дифференциальное уравнение y ‘ = 1 e y x – y x + y x

Примем z = y x , тогда y = x z ⇒ y ‘ = z + x z ‘ . Подставим в исходное уравнение:

y ‘ = 1 e y x – y x + y x ⇔ z + x z ‘ = 1 e z – z + z ⇔ x · d z d x = 1 e z – z ⇔ ( e z – z ) d z = d x x

Проведем интегрирование уравнения с разделенными переменными, которое мы получили при проведении преобразований:

∫ ( e z – z ) d z = ∫ d x x e z – z 2 2 + C 1 = ln x + C 2 e z – z 2 2 = ln x + C , C = C 2 – C 1

Выполним обратную замену для того, чтобы получить общее решение исходного ДУ в виде функции, заданной неявно:

e y x – 1 2 · y 2 x 2 = ln x + C

А теперь остановимся на ДУ, которые имеют вид:

y ‘ = a 0 y n + a 1 y n – 1 x + a 2 y n – 2 x 2 + . . . + a n x n b 0 y n + b 1 y n – 1 x + b 2 y n – 2 x 2 + . . . + b n x n

Разделив числитель и знаменатель дроби, расположенной в правой части записи, на y n или x n , мы можем привести исходное ДУ в виду y ‘ = f x y или y ‘ = f y x

Найти общее решение дифференциального уравнения y ‘ = y 2 – x 2 2 x y

В этом уравнении х и у отличны от 0 . Это позволяет нам разделить числитель и знаменатель дроби, расположенной в правой части записи на x 2 :

y ‘ = y 2 – x 2 2 x y ⇒ y ‘ = y 2 x 2 – 1 2 y x

Если мы введем новую переменную z = y x , то получим y = x z ⇒ y ‘ = z + x z ‘ .

Теперь нам необходимо осуществить подстановку в исходное уравнение:

y ‘ = y 2 x 2 – 1 2 y x ⇔ z ‘ x + z = z 2 – 1 2 z ⇔ z ‘ x = z 2 – 1 2 z – z ⇔ z ‘ x = z 2 – 1 – 2 z 2 2 z ⇔ d z d x x = – z 2 + 1 2 z ⇔ 2 z d z z 2 + 1 = – d x x

Так мы пришли к ДУ с разделенными переменными. Найдем его решение:

∫ 2 z d z z 2 + 1 = – ∫ d x x ∫ 2 z d z z 2 + 1 = ∫ d ( z 2 + 1 ) z 2 + 1 = ln z 2 + 1 + C 1 – ∫ d x x = – ln x + C 2 ⇒ ln z 2 + 1 + C 1 = – ln x + C 2

Для этого уравнения мы можем получить решение в явном виде. Для этого примем – ln C = C 2 – C 1 и применим свойства логарифма:

ln z 2 + 1 = – ln x + C 2 – C 1 ⇔ ln z 2 + 1 = – ln x – ln C ⇔ ln z 2 + 1 = – ln C x ⇔ ln z 2 + 1 = ln C x – 1 ⇔ e ln z 2 + 1 = e ln 1 C x ⇔ z 2 + 1 = 1 C x ⇔ z ± 1 C x – 1

Теперь выполним обратную замену y = x ⋅ z и запишем общее решение исходного ДУ:

y = ± x · 1 C x – 1

В даном случае правильным будет и второй вариант решения. Мы можем использовать замену z = x y Рассмотрим этот вариант более подробно.

Выполним деление числителя и знаменателя дроби, расположенной в правой части записи уравнения на y 2 :

y ‘ = y 2 – x 2 2 x y ⇔ y ‘ = 1 – x 2 y 2 2 x y

Тогда y ‘ = 1 – x 2 y 2 2 x y ⇔ z – z ‘ x z 2 = 1 – z 2 2 z

Проведем подстановку в исходное уравнение для того, чтобы получить ДУ с разделяющимися переменными:

y ‘ = 1 – x 2 y 2 2 x y ⇔ z – z ‘ x z 2 = 1 – z 2 2 z

Разделив переменные, мы получаем равенство d z z ( z 2 + 1 ) = d x 2 x , которое можем проинтегрировать:

∫ d z z ( z 2 + 1 ) = ∫ d x 2 x

Если мы разложим подынтегральную функцию интеграла ∫ d z z ( z 2 + 1 ) на простейшие дроби, то получим:

∫ 1 z – z z 2 + 1 d z

Выполним интегрирование простейших дробей:

∫ 1 z – z z 2 + 1 d z = ∫ z d z z 2 + 1 = ∫ d t z – 1 2 ∫ d ( z 2 + 1 ) z 2 + 1 = = ln z – 1 2 ln z 2 + 1 + C 1 = ln z z 2 + 1 + C 1

Теперь найдем интеграл ∫ d x 2 x :

∫ d x 2 x = 1 2 ln x + C 2 = ln x + C 2

В итоге получаем ln z z 2 + 1 + C 1 = ln x + C 2 или ln z z 2 + 1 = ln C · x , где ln C = C 2 – C 1 .

Выполним обратную замену z = x y и необходимые преобразования, получим:

y = ± x · 1 C x – 1

Вариант решения, при котором мы выполняли замену z = x y , оказался более трудоемким, чем в случае замены z = y x . Этот вывод будет справедлив для большого количества уравнений вида y ‘ = f x y или y ‘ = f y x . Если выбранный вариант решения подобных уравнений оказывается трудоемким, можно вместо замены z = x y ввести переменную z = y x . На результат это никак не повлияет.

Дифференциальные уравнения, сводящиеся к уравнениям с разделяющимися переменными y ‘ = f a 1 x + b 1 y + c 1 a 2 x + b 2 y + c 2 , a 1 , b 1 , c 1 , a 2 , b 2 , c 2 ∈ R

Дифференциальные уравнения y ‘ = f a 1 x + b 1 y + c 1 a 2 x + b 2 y + c 2 можно свести к уравнениям y ‘ = f x y или y ‘ = f y x , следовательно, к уравнениям с разделяющимися переменными. Для этого находится ( x 0 , y 0 ) – решение системы двух линейных однородных уравнений a 1 x + b 1 y + c 1 = 0 a 2 x + b 2 y + c 2 = 0 и вводятся новые переменные u = x – x 0 v = y – y 0 . После такой замены уравнение примет вид d v d u = a 1 u + b 1 v a 2 u + b 2 v .

Найти общее решение дифференциального уравнения y ‘ = x + 2 y – 3 x – 1 .

Составляем и решаем систему линейных уравнений:

x + 2 y – 3 = 0 x – 1 = 0 ⇔ x = 1 y = 1

Делаем замену переменных:

u = x – 1 v = y – 1 ⇔ x = u + 1 y = v + 1 ⇒ d x = d u d y = d v

После подстановки в исходное уравнение получаем d y d x = x + 2 y – 3 x – 1 ⇔ d v d u = u + 2 v u . После деления на u числителя и знаменателя правой части имеем d v d u = 1 + 2 v u .

Вводим новую переменную z = v u ⇒ v = z · y ⇒ d v d u = d z d u · u + z , тогда

d v d u = 1 + 2 v u ⇔ d z d u · u + z = 1 + 2 z ⇔ d z 1 + z = d u u ⇒ ∫ d z 1 + z = ∫ d u u ⇔ ln 1 + z + C 1 = ln u + C 2 ⇒ ln 1 + z = ln u + ln C , ln C = C 2 – C 1 ln 1 + z = ln C · u 1 + z = C · u ⇔ z = C · u – 1 ⇔ v u = C · u – 1 ⇔ v = u · ( C · u – 1 )

Возвращаемся к исходным переменным, производя обратную замену u = x – 1 v = y – 1 :
v = u · ( C · u – 1 ) ⇔ y – 1 = ( x – 1 ) · ( C · ( x – 1 ) – 1 ) ⇔ y = C x 2 – ( 2 C + 1 ) · x + C + 2

Это есть общее решение дифференциального уравнения.

Пример 5
Решить задачу Коши: $$ x^2 y’=y^2, y(1)=1 $$
Решение

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *