0

Динисторы в энергосберегающих лампах

Содержание

Схема и ремонт люминесцентных энергосберегающих ламп

В настоящее время всё большее распространение получают так называемые люминесцентные энергосберегающие лампы. В отличие от обычных люминесцентных ламп с электромагнитным балластом, в энергосберегающих лампах с электронным балластом используется специальная схема.

Благодаря этому такие лампы легко установить в патрон взамен обычной лампочки накаливания со стандартным цоколем E27 и E14. Именно о бытовых люминесцентных лампах с электронным балластом далее и пойдёт речь.

Отличительные особенности люминесцентных ламп от обычных ламп накаливания.

Люминесцентные лампы не зря называют энергосберегающими, так как их применение позволяет снизить энергопотребление на 20 – 25 % . Их спектр излучения более соответствует естественному дневному свету. В зависимости от состава применяемого люминофора можно изготавливать лампы с разным оттенком свечения, как более тёплых тонов, так и холодных. Следует отметить, что люминесцентные лампы более долговечны, чем лампы накаливания. Конечно, многое зависит от качества конструкции и технологии изготовления.

Устройство компактной люминесцентной лампы (КЛЛ).

Компактная люминесцентная лампа с электронным балластом (сокращённо КЛЛ) состоит из колбы, электронной платы и цоколя E27 (E14), с помощью которого она устанавливается в стандартном патроне.

Внутри корпуса размещается круглая печатная плата, на которой собран высокочастотный преобразователь. Преобразователь при номинальной нагрузке имеет частоту 40 – 60 кГц . В результате того, что используется довольно высокая частота преобразования, устраняется “моргание”, свойственное люминесцентным лампам с электромагнитным балластом (на основе дросселя), которые работают на частоте электросети 50 Гц. Принципиальная схема КЛЛ показана на рисунке.

По данной принципиальной схеме собираются в основном достаточно дешёвые модели, к примеру, выпускаемые под брендом Navigator и ERA. Если вы используете компактные люминесцентные лампы, то, скорее всего они собраны по приведённой схеме. Разброс указанных на схеме значений параметров резисторов и конденсаторов реально существует. Это связано с тем, что для ламп разной мощности применяются элементы с разными параметрами. В остальном схемотехника таких ламп мало чем отличается.

Разберёмся подробнее в назначении радиоэлементов, показанных на схеме. На транзисторах VT1 и VT2 собран высокочастотный генератор. В качестве транзисторов VT1 и VT2 используются кремниевые высоковольтные n-p-n транзисторы серии MJE13003 в корпусе TO-126. Обычно на корпусе этих транзисторов указываются только цифровой индекс 13003 . Также могут применяться транзисторы MPSA42 в более миниатюрном корпусе формата TO-92 или аналогичные высоковольтные транзисторы.

Миниатюрный симметричный динистор DB3 (VS1) служит для автозапуска преобразователя в момент подачи питания. Внешне динистор DB3 выглядит как миниатюрный диод. Схема автозапуска необходима, т.к преобразователь собран по схеме с обратной связью по току и поэтому сам не запускается. В маломощных лампах динистор может отсутствовать вообще.

Диодный мост, выполненный на элементах VD1 – VD4 служит для выпрямления переменного тока. Электролитический конденсатор С2 сглаживает пульсации выпрямленного напряжения. Диодный мост и конденсатор С2 являются простейшим сетевым выпрямителем. С конденсатора C2 постоянное напряжение поступает на преобразователь. Диодный мост может выполняться как на отдельных элементах (4 диодах), либо может применяться диодная сборка.

При своей работе преобразователь генерирует высокочастотные помехи, которые нежелательны. Конденсатор С1, дроссель (катушка индуктивности) L1 и резистор R1 препятствуют распространению высокочастотных помех по электросети. В некоторых лампах, видимо из экономии 🙂 вместо L1 устанавливают проволочную перемычку. Также, во многих моделях нет предохранителя FU1, который указан на схеме. В таких случаях, разрывной резистор R1 также играет роль простейшего предохранителя. В случае неисправности электронной схемы потребляемый ток превышает определённое значение, и резистор сгорает, разрывая цепь.

Дроссель L2 обычно собран на Ш-образном ферритовом магнитопроводе и внешне выглядит как миниатюрный броневой трансформатор. На печатной плате этот дроссель занимает довольно внушительное пространство. Обмотка дросселя L2 содержит 200 – 400 витков провода диаметром 0,2 мм. Также на печатной плате можно найти трансформатор, который указан на схеме как T1. Трансформатор T1 собран на кольцевом магнитопроводе с наружным диаметром около 10 мм. На трансформаторе намотаны 3 обмотки монтажным или обмоточным проводом диаметром 0,3 – 0,4 мм. Число витков каждой обмотки колеблется от 2 – 3 до 6 – 10.

Колба люминесцентной лампы имеет 4 вывода от 2 спиралей. Выводы спиралей подключаются к электронной плате методом холодной скрутки, т.е без пайки и прикручены на жёсткие проволочные штыри, которые впаяны в плату. В лампах малой мощности, имеющих малые габариты, выводы спиралей запаиваются непосредственно в электронную плату.

Ремонт бытовых люминесцентных ламп с электронным балластом.

Производители компактных люминесцентных ламп заявляют, что их ресурс в несколько раз больше, чем обычных ламп накаливания. Но, несмотря на это бытовые люминесцентные лампы с электронным балластом выходят из строя довольно часто.

Связано это с тем, что в них применяются электронные компоненты, не рассчитанные на перегрузки. Также стоит отметить высокий процент бракованных изделий и невысокое качество изготовления. По сравнению с лампами накаливания стоимость люминесцентных довольно высока, поэтому ремонт таких ламп оправдан хотя бы в личных целях. Практика показывает, что причиной выхода из строя служит в основном неисправность электронной части (преобразователя). После несложного ремонта работоспособность КЛЛ полностью восстанавливается и это позволяет сократить денежные расходы.

Перед тем, как начать рассказ о ремонте КЛЛ, затронем тему экологии и безопасности.

Опасность люминесцентных ламп и рекомендации по использованию.

Несмотря на свои положительные качества люминесцентные лампы вредны как для окружающей среды, так и для здоровья человека. Дело в том, что в колбе присутствуют пары ртути. Если её разбить, то опасные пары ртути попадут в окружающую среду и, возможно, в организм человека. Ртуть относят к веществам 1-ого класса опасности .

При повреждении колбы необходимо покинуть на 15 – 20 минут помещение и сразу же провести принудительное проветривание комнаты. Необходимо внимательно относиться к эксплуатации любых люминесцентных ламп. Следует помнить, что соединения ртути, применяемые в энергосберегающих лампах опаснее обычной металлической ртути. Ртуть способна оставаться в организме человека и наносить вред здоровью .

Кроме указанного недостатка необходимо отметить, что в спектре излучения люминесцентной лампы присутствует вредное ультрафиолетовое излучение. При длительном нахождении близко с включенной люминесцентной лампой возможно раздражение кожи, так как она чувствительна к ультрафиолету.

Наличие в колбе высокотоксичных соединений ртути является главным мотивом экологов, которые призывают сократить производство люминесцентных ламп и переходить к более безопасным светодиодным.

Разборка люминесцентной лампы с электронным балластом.

Несмотря на простоту разборки компактной люминесцентной лампы, следует быть аккуратным и не допускать разбития колбы. Как уже говорилось, внутри колбы присутствуют пары ртути, опасные для здоровья. К сожалению, прочность стеклянных колб невысока и оставляет желать лучшего.

Для того чтобы вскрыть корпус где размещена электронная схема преобразователя, необходимо острым предметом (узкой отвёрткой) разжать пластмассовую защёлку, которая скрепляет две пластмассовые части корпуса.

Далее следует отсоединить выводы спиралей от основной электронной схемы. Делать это лучше узкими плоскогубцами подхватив конец вывода провода спирали и отмотать витки с проволочных штырей. После этого стеклянную колбу лучше поместить в надёжное место, чтобы не допустить её разбития.

Оставшаяся электронная плата соединена двумя проводниками со второй частью корпуса, на которой смонтирован стандартный цоколь E27 (E14).

Восстановление работоспособности ламп с электронным балластом.

При восстановлении КЛЛ первым делом следует проверить целостность нитей накала (спиралей) внутри стеклянной колбы. Целостность нитей накала просто проверить с помощью обычного омметра. Если сопротивление нитей мало (единицы Ом), то нить исправна. Если же при замере сопротивление бесконечно велико, то нить накала перегорела и применить колбу в данном случае невозможно.

Наиболее уязвимыми компонентами электронного преобразователя, выполненного на основе уже описанной схемы (см. принципиальную схему), являются конденсаторы.

Если люминесцентная лампа не включается, то следует проверить на пробой конденсаторы C3, C4, C5. При перегрузках эти конденсаторы выходят из строя, т.к приложенное напряжение превосходит напряжение, на которое они рассчитаны. Если лампа не включается, но колба светиться в районе электродов, то возможно пробит конденсатор C5.

Читайте также:  Запуск программы невозможен так как отсутствует msvcp110

В таком случае преобразователь исправен, но поскольку конденсатор пробит, то в колбе не возникает разряд. Конденсатор C5 входит в колебательный контур, в котором в момент запуска возникает высоковольтный импульс, приводящий к появлению разряда. Поэтому если конденсатор пробит, то лампа не сможет нормально перейти в рабочий режим, а в районе спиралей будет наблюдаться свечение, вызываемое разогревом спиралей.

Холодный и горячий режим запуска люминесцентных ламп.

Бытовые люминесцентные лампы бывают двух типов:

С холодным запуском

С горячим запуском

Если КЛЛ загорается сразу после включения, то в ней реализован холодный запуск. Данный режим плох тем, что в таком режиме катоды лампы предварительно не прогреваются. Это может привести к перегоранию нитей накала вследствие протекания импульса тока.

Для люминесцентных ламп более предпочтителен горячий запуск. При горячем запуске лампа загорается плавно, в течение 1-3 секунд. В течение этих несколько секунд происходит разогрев нитей накала. Известно, что холодная нить накала имеет меньшее сопротивление, чем разогретая. Поэтому, при холодном запуске через нить накала проходит значительный импульс тока, который может со временем вызвать её перегорание.

Для обычных ламп накаливания холодный запуск является стандартным, поэтому многие знают, что они сгорают как раз в момент включения.

Для реализации горячего запуска в лампах с электронным балластом применяется следующая схема. Последовательно с нитями накала включается позистор (PTC – терморезистор). На принципиальной схеме этот позистор будет подключен параллельно конденсатору С5.

В момент включения в результате резонанса на конденсаторе С5, а, следовательно, и на электродах лампы возникает высокое напряжение, необходимое для её зажжения. Но в таком случае нити накала плохо прогреты. Лампа включается мгновенно. В данном случае параллельно С5 подключен позистор. В момент запуска позистор имеет низкое сопротивление и добротность контура L2C5 значительно меньше.

В результате напряжение резонанса ниже порога зажжения. В течение нескольких секунд позистор разогревается и его сопротивление увеличивается. В это же время разогреваются и нити накала. Добротность контура возрастает и, следовательно, растёт напряжение на электродах. Происходит плавный горячий запуск лампы. В рабочем режиме позистор имеет высокое сопротивление и не влияет на рабочий режим.

Нередки случаи, что выходит из строя как раз этот позистор, и лампа попросту не включается. Поэтому при ремонте ламп с балластом следует обратить на него внимание.

Довольно часто сгорает низкоомный резистор R1, который, как уже говорилось, играет роль предохранителя.

Активные элементы, такие как транзисторы VT1, VT2, диоды выпрямительного моста VD1 –VD4 также стоит проверить. Как правило, причиной их неисправности служит электрический пробой p-n переходов. Динистор VS1 и электролитический конденсатор С2 на практике редко выходят из строя.

Схема и ремонт люминесцентных энергосберегающих ламп

В настоящее время всё большее распространение получают так называемые люминесцентные энергосберегающие лампы. В отличие от обычных люминесцентных ламп с электромагнитным балластом, в энергосберегающих лампах с электронным балластом используется специальная схема.

Благодаря этому такие лампы легко установить в патрон взамен обычной лампочки накаливания со стандартным цоколем E27 и E14. Именно о бытовых люминесцентных лампах с электронным балластом далее и пойдёт речь.

Отличительные особенности люминесцентных ламп от обычных ламп накаливания.

Люминесцентные лампы не зря называют энергосберегающими, так как их применение позволяет снизить энергопотребление на 20 – 25 % . Их спектр излучения более соответствует естественному дневному свету. В зависимости от состава применяемого люминофора можно изготавливать лампы с разным оттенком свечения, как более тёплых тонов, так и холодных. Следует отметить, что люминесцентные лампы более долговечны, чем лампы накаливания. Конечно, многое зависит от качества конструкции и технологии изготовления.

Устройство компактной люминесцентной лампы (КЛЛ).

Компактная люминесцентная лампа с электронным балластом (сокращённо КЛЛ) состоит из колбы, электронной платы и цоколя E27 (E14), с помощью которого она устанавливается в стандартном патроне.

Внутри корпуса размещается круглая печатная плата, на которой собран высокочастотный преобразователь. Преобразователь при номинальной нагрузке имеет частоту 40 – 60 кГц . В результате того, что используется довольно высокая частота преобразования, устраняется “моргание”, свойственное люминесцентным лампам с электромагнитным балластом (на основе дросселя), которые работают на частоте электросети 50 Гц. Принципиальная схема КЛЛ показана на рисунке.

По данной принципиальной схеме собираются в основном достаточно дешёвые модели, к примеру, выпускаемые под брендом Navigator и ERA. Если вы используете компактные люминесцентные лампы, то, скорее всего они собраны по приведённой схеме. Разброс указанных на схеме значений параметров резисторов и конденсаторов реально существует. Это связано с тем, что для ламп разной мощности применяются элементы с разными параметрами. В остальном схемотехника таких ламп мало чем отличается.

Разберёмся подробнее в назначении радиоэлементов, показанных на схеме. На транзисторах VT1 и VT2 собран высокочастотный генератор. В качестве транзисторов VT1 и VT2 используются кремниевые высоковольтные n-p-n транзисторы серии MJE13003 в корпусе TO-126. Обычно на корпусе этих транзисторов указываются только цифровой индекс 13003 . Также могут применяться транзисторы MPSA42 в более миниатюрном корпусе формата TO-92 или аналогичные высоковольтные транзисторы.

Миниатюрный симметричный динистор DB3 (VS1) служит для автозапуска преобразователя в момент подачи питания. Внешне динистор DB3 выглядит как миниатюрный диод. Схема автозапуска необходима, т.к преобразователь собран по схеме с обратной связью по току и поэтому сам не запускается. В маломощных лампах динистор может отсутствовать вообще.

Диодный мост, выполненный на элементах VD1 – VD4 служит для выпрямления переменного тока. Электролитический конденсатор С2 сглаживает пульсации выпрямленного напряжения. Диодный мост и конденсатор С2 являются простейшим сетевым выпрямителем. С конденсатора C2 постоянное напряжение поступает на преобразователь. Диодный мост может выполняться как на отдельных элементах (4 диодах), либо может применяться диодная сборка.

При своей работе преобразователь генерирует высокочастотные помехи, которые нежелательны. Конденсатор С1, дроссель (катушка индуктивности) L1 и резистор R1 препятствуют распространению высокочастотных помех по электросети. В некоторых лампах, видимо из экономии 🙂 вместо L1 устанавливают проволочную перемычку. Также, во многих моделях нет предохранителя FU1, который указан на схеме. В таких случаях, разрывной резистор R1 также играет роль простейшего предохранителя. В случае неисправности электронной схемы потребляемый ток превышает определённое значение, и резистор сгорает, разрывая цепь.

Дроссель L2 обычно собран на Ш-образном ферритовом магнитопроводе и внешне выглядит как миниатюрный броневой трансформатор. На печатной плате этот дроссель занимает довольно внушительное пространство. Обмотка дросселя L2 содержит 200 – 400 витков провода диаметром 0,2 мм. Также на печатной плате можно найти трансформатор, который указан на схеме как T1. Трансформатор T1 собран на кольцевом магнитопроводе с наружным диаметром около 10 мм. На трансформаторе намотаны 3 обмотки монтажным или обмоточным проводом диаметром 0,3 – 0,4 мм. Число витков каждой обмотки колеблется от 2 – 3 до 6 – 10.

Колба люминесцентной лампы имеет 4 вывода от 2 спиралей. Выводы спиралей подключаются к электронной плате методом холодной скрутки, т.е без пайки и прикручены на жёсткие проволочные штыри, которые впаяны в плату. В лампах малой мощности, имеющих малые габариты, выводы спиралей запаиваются непосредственно в электронную плату.

Ремонт бытовых люминесцентных ламп с электронным балластом.

Производители компактных люминесцентных ламп заявляют, что их ресурс в несколько раз больше, чем обычных ламп накаливания. Но, несмотря на это бытовые люминесцентные лампы с электронным балластом выходят из строя довольно часто.

Связано это с тем, что в них применяются электронные компоненты, не рассчитанные на перегрузки. Также стоит отметить высокий процент бракованных изделий и невысокое качество изготовления. По сравнению с лампами накаливания стоимость люминесцентных довольно высока, поэтому ремонт таких ламп оправдан хотя бы в личных целях. Практика показывает, что причиной выхода из строя служит в основном неисправность электронной части (преобразователя). После несложного ремонта работоспособность КЛЛ полностью восстанавливается и это позволяет сократить денежные расходы.

Перед тем, как начать рассказ о ремонте КЛЛ, затронем тему экологии и безопасности.

Опасность люминесцентных ламп и рекомендации по использованию.

Несмотря на свои положительные качества люминесцентные лампы вредны как для окружающей среды, так и для здоровья человека. Дело в том, что в колбе присутствуют пары ртути. Если её разбить, то опасные пары ртути попадут в окружающую среду и, возможно, в организм человека. Ртуть относят к веществам 1-ого класса опасности .

Читайте также:  Двухполярный регулируемый стабилизатор напряжения

При повреждении колбы необходимо покинуть на 15 – 20 минут помещение и сразу же провести принудительное проветривание комнаты. Необходимо внимательно относиться к эксплуатации любых люминесцентных ламп. Следует помнить, что соединения ртути, применяемые в энергосберегающих лампах опаснее обычной металлической ртути. Ртуть способна оставаться в организме человека и наносить вред здоровью .

Кроме указанного недостатка необходимо отметить, что в спектре излучения люминесцентной лампы присутствует вредное ультрафиолетовое излучение. При длительном нахождении близко с включенной люминесцентной лампой возможно раздражение кожи, так как она чувствительна к ультрафиолету.

Наличие в колбе высокотоксичных соединений ртути является главным мотивом экологов, которые призывают сократить производство люминесцентных ламп и переходить к более безопасным светодиодным.

Разборка люминесцентной лампы с электронным балластом.

Несмотря на простоту разборки компактной люминесцентной лампы, следует быть аккуратным и не допускать разбития колбы. Как уже говорилось, внутри колбы присутствуют пары ртути, опасные для здоровья. К сожалению, прочность стеклянных колб невысока и оставляет желать лучшего.

Для того чтобы вскрыть корпус где размещена электронная схема преобразователя, необходимо острым предметом (узкой отвёрткой) разжать пластмассовую защёлку, которая скрепляет две пластмассовые части корпуса.

Далее следует отсоединить выводы спиралей от основной электронной схемы. Делать это лучше узкими плоскогубцами подхватив конец вывода провода спирали и отмотать витки с проволочных штырей. После этого стеклянную колбу лучше поместить в надёжное место, чтобы не допустить её разбития.

Оставшаяся электронная плата соединена двумя проводниками со второй частью корпуса, на которой смонтирован стандартный цоколь E27 (E14).

Восстановление работоспособности ламп с электронным балластом.

При восстановлении КЛЛ первым делом следует проверить целостность нитей накала (спиралей) внутри стеклянной колбы. Целостность нитей накала просто проверить с помощью обычного омметра. Если сопротивление нитей мало (единицы Ом), то нить исправна. Если же при замере сопротивление бесконечно велико, то нить накала перегорела и применить колбу в данном случае невозможно.

Наиболее уязвимыми компонентами электронного преобразователя, выполненного на основе уже описанной схемы (см. принципиальную схему), являются конденсаторы.

Если люминесцентная лампа не включается, то следует проверить на пробой конденсаторы C3, C4, C5. При перегрузках эти конденсаторы выходят из строя, т.к приложенное напряжение превосходит напряжение, на которое они рассчитаны. Если лампа не включается, но колба светиться в районе электродов, то возможно пробит конденсатор C5.

В таком случае преобразователь исправен, но поскольку конденсатор пробит, то в колбе не возникает разряд. Конденсатор C5 входит в колебательный контур, в котором в момент запуска возникает высоковольтный импульс, приводящий к появлению разряда. Поэтому если конденсатор пробит, то лампа не сможет нормально перейти в рабочий режим, а в районе спиралей будет наблюдаться свечение, вызываемое разогревом спиралей.

Холодный и горячий режим запуска люминесцентных ламп.

Бытовые люминесцентные лампы бывают двух типов:

С холодным запуском

С горячим запуском

Если КЛЛ загорается сразу после включения, то в ней реализован холодный запуск. Данный режим плох тем, что в таком режиме катоды лампы предварительно не прогреваются. Это может привести к перегоранию нитей накала вследствие протекания импульса тока.

Для люминесцентных ламп более предпочтителен горячий запуск. При горячем запуске лампа загорается плавно, в течение 1-3 секунд. В течение этих несколько секунд происходит разогрев нитей накала. Известно, что холодная нить накала имеет меньшее сопротивление, чем разогретая. Поэтому, при холодном запуске через нить накала проходит значительный импульс тока, который может со временем вызвать её перегорание.

Для обычных ламп накаливания холодный запуск является стандартным, поэтому многие знают, что они сгорают как раз в момент включения.

Для реализации горячего запуска в лампах с электронным балластом применяется следующая схема. Последовательно с нитями накала включается позистор (PTC – терморезистор). На принципиальной схеме этот позистор будет подключен параллельно конденсатору С5.

В момент включения в результате резонанса на конденсаторе С5, а, следовательно, и на электродах лампы возникает высокое напряжение, необходимое для её зажжения. Но в таком случае нити накала плохо прогреты. Лампа включается мгновенно. В данном случае параллельно С5 подключен позистор. В момент запуска позистор имеет низкое сопротивление и добротность контура L2C5 значительно меньше.

В результате напряжение резонанса ниже порога зажжения. В течение нескольких секунд позистор разогревается и его сопротивление увеличивается. В это же время разогреваются и нити накала. Добротность контура возрастает и, следовательно, растёт напряжение на электродах. Происходит плавный горячий запуск лампы. В рабочем режиме позистор имеет высокое сопротивление и не влияет на рабочий режим.

Нередки случаи, что выходит из строя как раз этот позистор, и лампа попросту не включается. Поэтому при ремонте ламп с балластом следует обратить на него внимание.

Довольно часто сгорает низкоомный резистор R1, который, как уже говорилось, играет роль предохранителя.

Активные элементы, такие как транзисторы VT1, VT2, диоды выпрямительного моста VD1 –VD4 также стоит проверить. Как правило, причиной их неисправности служит электрический пробой p-n переходов. Динистор VS1 и электролитический конденсатор С2 на практике редко выходят из строя.

Радиолюбители часто используют в своих конструкциях детали, бывшие в употреблении. Их выпаивают из прежних конструкций, из отслужившей свой срок традиционной бытовой электронной аппаратуры — радиоприёмников, телевизоров, магнитофонов. В последние годы источниками радиодеталей и целых блоков всё чаще становятся и такие изделия, как не подлежащие ремонту и устаревшие морально компьютеры, вышедшие из строя стиральные машины, другие современные бытовые приборы. В журнале уже рассказывалось об использовании в любительских конструкциях блоков питания компьютера, узлов и деталей их дисководов, манипуляторов "мышь", мобильных телефонов и т. д. Сегодня мы предлагаем вниманию читателей статью о том, что можно сделать из деталей "перегоревших" энергосберегающих люминесцентных ламп. Описанными в ней устройствами арсенал возможных конструкций с применением этих деталей, конечно же, не исчерпывается.

Так называемые энергосберегающие осветительные лампы (люминесцентные и светодиодные) постепенно вытесняют привычные многим поколениям лампы накаливания В настоящее время более доступны и распространены люминесцентные, получившие название КЛЛ (компактные люминесцентные лампы). Принцип их действия основан на поддержании электрического разряда в изогнутой (для уменьшения размеров) стеклянной трубке (собственно люминесцентной лампе), заполненной смесью паров ртути и инертных газов. При этом возникает ультрафиолетовое излучение, преобразуемое люминофором, которым покрыта внутренняя поверхность трубки, в видимый свет. В состав КЛЛ входит специализированный блок питания — так называемый электронный пускорегулирующий аппарат (ЭПРА).

Как и любая радиоэлектронная аппаратура, КЛЛ выходят из строя. Причин тому много, но в статье пойдёт речь не о ремонте, а об использовании входящих в них элементов. Если неисправность вызвана выходом из строя самой люминесцентной лампы (из-за разгерметизации или перегорания нити накаливания), то большинство электронных компонентов ЭПРА остаются исправными и радиолюбитель может использовать их в своих конструкциях. Поскольку число таких ламп постоянно растёт, радиодетали, применённые в них, становятся всё более доступными.


Puc.1

Что же содержит электронная "начинка" КЛЛ? На рис. 1 показан один из вариантов схемы ЭПРА для питания лампы мощностью 11. 20 Вт. В его состав входят мостовой выпрямитель на диодах VD1—VD4 со сглаживающимконденсатором С1 и автогенератор, выполненный на транзисторах VT1, VT2 и трансформаторе Т1. Выходное напряжение генератора через балластный дроссель L2 индуктивностью несколько миллигенри поступает на люминесцентную лампу EL1. На этапе её запуска ток, протекающий через нити накаливания, разогревает их, что совместно с напряжением между ними приводит к возникновению электрического разряда. Поскольку это напряжение переменное, нити поочерёдно выполняют функции то анода, то катода, частота напряжения — несколько десятков килогерц. Транзисторы автогенератора работают без начального тока коллектора, поэтому для запуска применён RC-генератор, состоящий из резистора R2, конденсатора С2 и симметричного динистора VS1. После запуска этот генератор работу прекращает.

Дроссель L1 совместно с конденсатором С1 образуют фильтр, предотвращающий проникание в сеть помех, возникающих при работе автогенератора. Резистор R1 ограничивает ток зарядки конденсатора С1 и, кроме того, выполняет функцию предохранителя — перегорает при чрезмерном потребляемом токе в различных аварийных ситуациях.

Следует отметить, что некоторые производители, экономя на деталях, часть из них (например, дроссель L1, диоды VD6, VD7, один из конденсаторов С5, С6) не устанавливают. Кроме того, схемы ЭПРА разных производителей могут отличаться от приведённой на рис. 1, например, в некоторых моделях отсутствует RC-генератор на динисторе.

Читайте также:  Безлимитный интернет в деревне оптимальные варианты

Большинство элементов ЭПРА предназначены для работы при напряжении более 300 В, поэтому их с успехом можно применить в различных радиолюбительских конструкциях, питаемых непосредственно от сети. В первую очередь это относится к диодам, конденсаторам и транзисторам.

Максимальный прямой ток выпрямительных диодов 1 N4007 достигает 1 А, обратный не превышает 30 мкА, максимально допустимое обратное постоянное напряжение — 1000 В.

Ёмкость оксидного конденсатора С1 зависит от мощности лампы, её минимальное значение, как правило, 2,2 или 3,3 мкФ, а номинальное напряжение — 400 В. Номинальное напряжение остальных конденсаторов не выходит за пределы 250. 630 В (за исключением С4, у него оно обычно равно 1,2 кВ).

В большинстве ЭПРА применены транзисторы различных фирм с цифровым кодом 1300х в условных обозначениях. Так, например, в КЛЛ мощностью до 11 Вт чаще всего применяют транзисторы 13001, 13002 или 13003 с максимально допустимым напряжением коллектор—эмиттер 400 В. Их предельная рабочая частота — около 4 МГц, коэффициент передачи тока базы — 5. 25, максимальный ток коллектора — 0,6. 1,5 А, максимальная рассеиваемая коллектором мощность — 1 Вт для транзисторов в корпусе ТО-92 и несколько десятков ватт (с теплоотводом) — в корпусе ТО-126. Следует, однако, учесть, что названные параметры усреднённые, у изделий разных производителей они могут отличаться на 20. 30 % и даже более.

Интерес для радиолюбителей представляет неуправляемый симметричный динистор DB3 с фиксированным напряжением включения Uвкл = 32 ±4 В (применяют симисторы и с иным значением этого параметра — DC34, DB4, W348). Температурная зависимость напряжения ивкл DB3 положительная, около 25 мВ с С. Он работоспособен при любой полярности напряжения, а несимметричность Uвкл не превышает ±3 В. Ток включения — 100, а выключения — 10 мкА время переключения — 1,5 мкс. Максимально допустимый импульсный ток — 2 А, рассеиваемая мощность — 150 мВт. Динистор выпускается в корпусах DO-35 (стеклянном цилиндрическом) и DO-41 (пластмассовом)

Самое очевидное применение ди-нистора — в RC-генераторах, как это и сделано в КЛЛ. Если в такой генератор ввести светодиод или акустический излучатель, он превратится в источник световых или звуковых сигналов. Схема генератора световых импульсов показана на рис. 2.а.


Puc.2

Последовательно с динистором VS1 включены токоограничивающий резистор R2 и источник света — светодиод HL1. С включением питания через резистор R1 заряжается конденсатор С1, и когда напряжение на нём достигает примерно 32 В. динистор открывается и светодиод HL1 вспыхивает. При этом конденсатор быстро разряжается и процесс повторяется.

Частота вспышек зависит от напряжения питания (с его повышением она увеличивается, а с понижением — уменьшается), сопротивления резистора R1 и ёмкости конденсатора С1 (здесь зависимость обратная: с увеличением сопротивления и ёмкости частота понижается, а с уменьшением — возрастает). Подборкой этих элементов можно установить желаемую частоту. Яркость вспышек изменяют подборкой резистора R2. Такой генератор можно встроить, например, в сетевой выключатель, подсоединив его параллельно контактам выключателя и установив последовательно с резистором R1 диод VD1 (1N4007), как показано на схеме штриховыми линиями.

Заменив светодиод и резистор R2 звуковым излучателем НА1, например, головным телефоном (или динамической головкой) сопротивлением 30 Ом и более, получим генератор звуковых импульсов (рис. 2,6) Чтобы применить в нём пьезокерамический звукоизлуча-тель, например, ЗП-З, надо параллельно ему подключить дроссель L1 и получившуюся цепь (рис. 2,в) включить вместо звукоизлучателя НА1 (рис. 2,б). Дроссель L1 индуктивностью 1 мГн — от сетевого фильтра КЛЛ (см. рис. 1).

С конденсатором С1 указанной на рис. 2 ёмкости генератор вырабатывает звуковые сигналы, слышимые как щелчки. Если его ёмкость уменьшить, например до 0,022 мкФ. частота колебаний генератора повысится настолько что будет слышен непрерывный звуковой сигнал, высоту тока которого можно изменить подборкой этого конденсатора

На основе рассмотренных генераторов можно построить сигнализаторы, реагирующие на повышение или понижение напряжения, а также фотореле, термореле и другие пороговые устройства


Puc.3

Схема сигнализатора превышения сетевого напряжения показана на рис. 3,а. Его основа — RC-генератор на динисторе VS1. Напряжение сети выпрямляется диодом VD1 и затем сглаживается конденсатором С1. Резистор R1 ограничивает ток зарядки конденсатора С1, а резистор R3, образующий вместе с резистором R2 делитель выпрямленного напряжения, задаёт ток зарядки конденсатора С2. При превышении сетевым напряжением заранее установленного порога раздаётся звуковой сигнал в виде щелчков (чем больше превышение, тем чаще они следуют), в такт с которыми вспыхивает светодиод HL1. Порог срабатывания устанавливают подстроечным резистором R3. Следует отметить, что средний ток через светодиод в данном случае не превышает 1 мА, а импульсный может достигать 150 мА. Это не приводит к разогреву светодиода, но может снизить срок его службы Поэтому ёмкость конденсатора С2 увеличивать не следует, а если громкость необходимо уменьшить, последовательно со светодиодом следует установить резистор сопротивлением 100. 510 Ом. Это уменьшит импульсный ток.


Puc.4

Все элементы этого устройства можно разместить на небольшой печатной плате (рис. 4), изготовленной из фольгированного с одной стороны стеклотекстолита толщиной 0,5—1 мм. Постоянные резисторы — С2-23, под-строечный — СПЗ-19; конденсатор С2 — оксидный импортный; светодиод — любой, но лучше применить с повышенной яркостью; головной телефон — миниатюрный сопротивлением 30 Ом и более. Остальные детали (VD1, С1, VS1) — от КЛЛ. В качестве корпуса сигнализатора удобно использовать сетевую евровилку (рис. 5).

Смонтированную плату закрепляют в ней (рис. 6) с помощью термоклея, для светодиода в корпусе сверлят отверстие, а головной телефон устанавливают в канале, предназначенном для вывода проводов.

Пьезокерамический звукоизлучатель (ЗП-1 ЗП-З) подключают, как показано на рис. 3,б. Частота следования импульсов и в этом случае — несколько герц, поэтому о превышении напряжения сети устройство сигнализирует щелчками. Но если исключить конденсатор С2, она возрастёт до нескольких сотен или даже тысяч герц — всё зависит от собственной ёмкости пьезоизлучателя (например, у ЗП-З она достигает 0,011 мкФ). Повысить громкость сигнала можно увеличением частоты (приближением её к резонансной частоте излучателя) В этом случае сопротивление резистора R2 следует уменьшить до 150 кОм, a R3 — до 47 кОм.

Схема сигнализатора снижения напряжения изображена на рис. 7.


Puc.7

Он содержит два RC-генератора. Первый из которых находится в открытом состоянии, шунтируя конденсатор С4, поэтому он не заряжается и второй генератор (на динисторе VS2) не работает. Когда же напряжение сети станет меньше порогового, первый генератор прекратит работу и конденсатор СЗ разрядится через резисторы R5, R6 и эмиттерный переход транзистора VT1. В результате он закроется и включится генератор на динисторе VS2 — звукоизлучатель начнёт издавать щелчки, а светодиод — вспыхивать. Порог срабатывания устройства устанавливают подстроечным резистором R3.


Puc.8

Все детали этого сигнализатора размещают на печатной плате, изготовленной по чертежу, приведённому на рис. 8. Внешний вид смонтированного устройства показан на рис.9.

Индикатор напряжения сети, работающий по принципу "меньше—норма—больше", можно собрать по схеме, изображённой на рис. 10. В его состав входят три RC-генератора на динисторах, работающих независимо один от другого. Поскольку ёмкость конденсаторов С2—С4 относительно невелика (по сравнению с ёмкостью соответствующих конденсаторов в устройствах, рассмотренных ранее), частота следования импульсов генераторов — несколько сотен герц, светодиоды вспыхивают с этой же частотой, поэтому их свечение кажется постоянным. Пороги включения генераторов устанавливают подстроечными резисторами R3, R6 и R9 так, чтобы при напряжении сети, например, 190, 205 и 235 В светодиоды HL1 (синего цвета свечения), HL2 (зелёного) и HL3 (красного) загорались последовательно один за другим. В этом случае при напряжении менее 190 В все светодиоды погашены, в интервале 190. 205 В включён светодиод HL1, в интервале 205. 235 В — HL1 и HL2, а свыше 235 В — все три. Разумеется, можно выбрать другие пороги включения и применить светодиоды иных цветов свечения.


Puc.11

Чертёж печатной платы этого индикатора показан на рис. 11, а внешний вид смонтированного устройства — на рис. 12. Увеличить число ступеней индикации напряжения можно простым наращиванием числа RC-генераторов.


Puc.11


Puc.12

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *