0

Дискретная случайная величина задана законом распределения вероятностей

На этой странице мы собрали краткую теорию и примеры решения учебных задач, в которых дискретная случайная величина уже задана своим рядом распределения (табличный вид) и требуется ее исследовать: найти числовые характеристики, построить графики и т.д. Примеры на известные виды распределения вы можете найти по ссылкам:

Краткая теория о ДСВ

Дискретная случайная величина задается своим рядом распределения: перечнем значений $x_i$, которые она может принимать, и соответствующих вероятностей $p_i=P(X=x_i)$. Количество значений случайной величины может быть конечным или счетным. Для определенности будем рассматривать случай $i=overline<1,n>$. Тогда табличное представление дискретной случайной величины имеет вид:

$$ egin <|c|c|>hline X_i & x_1 & x_2 & dots & x_n \ hline p_i & p_1 & p_2 & dots & p_n \ hline end $$

При этом выполняется условие нормировки: сумма всех вероятностей должна быть равна единице

Графически ряд распределения можно представить полигоном распределения (или многоугольником распределения). Для этого на плоскости откладываются точки с координатами $(x_i,p_i)$ и соединяются по порядку ломаной линией. Подробные примеры вы найдете ниже.

Числовые характеристики ДСВ

$$M(X) = sum_^ x_i cdot p_i$$

Среднее квадратическое отклонение:

Мода: значение $Mo=x_k$ с наибольшей вероятностью $p_k=max_i$.

Функция распределения ДСВ

По ряду распределения можно составить функцию распределения дискретной случайной величины $F(x)=P(Xlt x)$. Эта функция задает вероятность того, что случайная величина $X$ примет значение меньшее некоторого числа $x$. Примеры построения с подробными вычислениями и графиками вы найдете в примерах ниже.

Примеры решенных задач

Задача 1. Дискретная случайная величина задана рядом распределения:
1 2 3 4 5 6 7
0,05 0,15 0,3 0,2 0,1 0,04 0,16
Построить многоугольник распределения и функцию распределения $F(x)$. Вычислить: $M[X], D[X], sigma[X]$, а также коэффициент вариации, асимметрии, эксцесса, моду и медиану.

Задача 2. Дан закон распределения дискретной случайной величины Х. Требуется:
а) определить математическое ожидание М(х), дисперсию D(х) и среднее квадратическое отклонение (х) случайной величины Х; б) построить график этого распределения.
хi 0 1 2 3 4 5 6
pi 0,02 0,38 0,30 0,16 0,08 0,04 0,02

Задача 3. Для случайной величины Х с данным рядом распределения
-1 0 1 8
0,2 0,1 $р_1$ $р_2$
А) найдите $р_1$ и $р_2$ так, чтобы $М(Х)=0,5$
Б) после этого вычислите математическое ожидание и дисперсию случайной величины $Х$ и постройте график ее функции распределения

Задача 4. Дискретная СВ $X$ может принимать только два значения: $x_1$ и $x_2$, причем $x_1 lt x_2$. Известны вероятность $P$ возможного значения, математическое ожидание $M(x)$ и дисперсия $D(x)$. Найти: 1) Закон распределения этой случайной величины; 2) Функцию распределения СВ $X$; 3) Построить график $F(x)$.
$P=0,3; M(x)=6,6; D(x)=13,44.$

Задача 5. Случайная величина Х принимает три значения: 2, 4 и 6. Найти вероятности этих значений, если $M(X)=4,2$, $D(X)=1,96$.

Задача 6. Дан ряд распределения дискретной с.в. $Х$. Найти числовые характеристики положения и рассеивания с.в. $Х$. Найти м.о. и дисперсию с.в. $Y=X/2-2$, не записывая ряда распределения с.в. $Y$, проверить результат с помощью производящей функции.
Построить функцию распределения с.в. $Х$.
¦ x¦ 8 ¦ 12 ¦ 18 ¦ 24 ¦ 30 ¦
¦ p¦ 0,3¦ 0,1¦ 0,3¦ 0,2¦ 0,1¦

Задача 7. Распределение дискретной случайной величины $Х$ задано следующей таблицей (рядом распределения):
-6 3 9 15
0,40 0,30 ? 0,10
Определить недостающее значение в таблице распределения. Вычислить основные числовые характеристики распределения: $M_x, D_x, sigma_x$. Найти и построить функцию распределения $F(x)$. Определить вероятность того, что случайная величина $Х$ примет значения:
А) больше чем 6,
Б) меньше чем 12,
В) не больше 9.

Задача 8. В задаче требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично (в первой строке таблицы указаны возможные значения, во второй строке – вероятности возможных значений).

Задача 9. Задан закон распределения дискретной случайной величины $X$ (в первой строке указаны возможные значения $x_i$, во второй строке – вероятности возможных значений $p_i$).
Найти:
А) математическое ожидание $M(X)$, дисперсию $D(X)$ и среднее квадратическое отклонение $sigma(X)$;
Б) составить функцию распределения случайной величины $F(x)$ и построить ее график;
В) вычислить вероятности попадания случайной величины $X$ в интервал $x_2 lt X lt x_4$, пользуясь составленной функцией распределения $F(x)$;
Г) составить закон распределения величины $Y=100-2X$;
Д) вычислить математическое ожидание и дисперсию составленной случайной величины $Y$ двумя способами, т.е. пользуясь
свойством математического ожидания и дисперсии, а также непосредственно по закону распределения случайной величины $Y$.
10 20 30 40 50
0,1 0,2 0,1 0,2 0,4

Читайте также:  Вода в динамике телефона что делать

Задача 10. Дискретная случайная величина задана таблице. Вычислить ее начальные и центральные моменты до 4 порядка включительно. Найти вероятности событий $xi lt Mxi$, $xi ge M xi$, $xi lt 1/2 M xi$, $xi ge 1/2 M xi$.
X 0 0,3 0,6 0,9 1,2
P 0,2 0,4 0,2 0,1 0,1

Решебник по терверу

Нужны еще решения? Более 11000 подробно решенных и оформленных задач. Найди в решебнике сейчас:

Закон распределения дискретной случайной величины (ДСВ) представляет собой соответствие между значениями х1, х2,…,хn этой величины и их вероятностями p1, p2,…,pn

Может быть задан аналитически, графически или таблично.

Самый простой способ представления закона распределения дискретной случайной величины — в виде таблицы ряда распределения, то есть

X x1 x2 …… xn
P p1 p2 …… pn

х1, х2,…,хn — значения дискретной случайной величины;
p1, p2,…,pn — вероятности значений X дискретной случайной величина.
Также должно выполняться условия, что сумма вероятностей равна 1, то есть
∑p=p1+p2+ … +pn=1
Графически закон распределения ДСВ задается в виде многоугольника распределения см. здесь., а аналитически, например, с применением формулы Бернулли. Рассмотрим примеры

Пример 1
Монета подбрасывается 10 раз, герб выпал 6 раз, а орел — 4 раза. Составить закон распределения дискретной случайной величины.
Решение
Вероятности равны:
p1(6)=6/10=0,6;
p2(4)=4/10=0,4

X 6 4
P 0.6 0.4

Пример 2
Из корзины извлечено 4 белых шара, 6 черных, 8 синих и 2 красных шара. Найти закон распределения случайной величины X возможного выигрыша на один билет.
Решение
Объем выборки равен
n=4+6+8+2=20
X принимает следующие значения:
x1=4; x2=6; x3=8; x1=2
Найдем их вероятности:

p1(4)=4/20=0,2;
p2(6)=6/20=0,3;
p3(8)=8/20=0,4;
p4(2)=2/20=0,1
Получаем таблицу закона распределения дискретной случайной величины

X 4 6 8 2
P 0.2 0.3 0.4 0.1

Пример 3
По контрольной работе по математике школьники получили оценки:
удовлетворительно — 5 человек;
хорошо — 13 человек;
отлично — 7 человек.
Составьте таблицу закона распределения ДСВ
Решение

n=5+13+7=26

Таблица имеет вид:

X 5 13 8 2
P 0.2 0.52 0.28 0.1

Пример 4
Партия из 8 изделий содержит 5 стандартных. Наудачу отбираются 3 изделия. Составить таблицу закона распределения числа стандартных изделий среди отобранных.
Решение
Для составления закона распределения воспользуемся формулой комбинаторики сочетание без повторений, то есть всего 8 изделия, а отобрать необходимо 3 изделия получаем:

при P(X=0) — вероятность того, что среди трех отобранных изделий не окажется ни одного стандартного;
при P(X=1) — вероятность того, что среди трех отобранных изделий окажется одно стандартное и два нестандартных изделия;
при P(X=2) — вероятность того, что среди трех отобранных изделий окажется два стандартных и одно нестандартное изделие;
при P(X=3) — вероятность того, что среди трех отобранных изделий все три изделия стандартные.

Составим таблицу распределения

X 1 2 3
P 0.018 0.268 0.536 0.178

Пример 5
В партии из шести деталей имеется четыре стандартных. Наудачу отобраны три детали. Составить закон распределения дискретной случайной величины X — числа стандартных деталей среди отобранных.

Решение

Возможные варианты значений СВ X: 1, 2, 3

$n=C_6^3$ — числу способов, которыми можно выбрать три детали из шести;

$C_4^x$ — число способов, которыми из четырех деталей выбирают х деталей.

$C_2^<3 — x>$ — общее число способов отбора нестандартных деталей

Тогда вероятности события A вычисляются по формуле

Закон распределения дискретной случайной величины X для составления ряда распределения:

Глава 1. Дискретная случайная величина

§1.Понятия случайной величины.

Закон распределения дискретной случайной величины.

Определение: Случайной называется величина, которая в результате испытания принимает только одно значение из возможного множества своих значение, наперед неизвестное и зависящее от случайных причин.

Различают два вида случайных величин: дискретные и непрерывные.

Определение: Случайная величина Х называется дискретной (прерывной), если множество ее значений конечное или бесконечное, но счетное.

Другими словами, возможные значения дискретной случайной величину можно перенумеровать.

Описать случайную величину можно с помощью ее закона распределения.

Определение: Законом распределения дискретной случайной величины называют соответствие между возможными значениями случайной величины и их вероятностями.

Закон распределения дискретной случайной величины Х может быть задан в виде таблицы, в первой строке которой указаны в порядке возрастания все возможные значения случайной величины, а во второй строке соответствующие вероятности этих значений, т. е.

Читайте также:  Борис борк гипнолог отзывы

Такая таблица называется рядом распределения дискретной случайной величины.

Если множество возможных значений случайной величины бесконечно, то ряд р1+ р2+…+ рn+… сходится и его сумма равна 1.

Закон распределения дискретной случайной величины Х можно изобразить графически, для чего в прямоугольной системе координат строят ломаную, соединяющую последовательно точки с координатами (xi;pi), i=1,2,…n. Полученную линию называют многоугольником распределения (рис.1).

Закон распределения дискретной случайной величины Х может быть также задан аналитически (в виде формулы):

Задача№1. Вероятности того, что студент сдаст экзамен в сессию по математическому анализу и органической химии соответственно равны 0,7 и 0,8. Составить закон распределения случайной величины Х – числа экзаменов, которые сдаст студент.

Решение. Рассматриваемая случайная величина X в результате экзамена может принять одно из следующих значений: x1=0, x2=1, х3=2.

Найдем вероятность этих значений. Обозначим события:

Итак, закон распределения случайной величины Х задается таблицей:

§2. Функция распределения

Полное описание случайной величины дает также функция распределения.

Определение: Функцией распределения дискретной случайной величины Х называется функция F(x), определяющая для каждого значения х вероятность того, что случайная величина Х примет значение, меньше х:

Её график изображен на рис.2:

§3. Числовые характеристики дискретной случайной величины.

К числу важных числовых характеристик относится математическое ожидание.

Определение: Математическим ожиданием М(Х) дискретной случайной величины Х называется сумма произведений всех ее значений на соответствующие им вероятности:

М(Х)=∑ xiрi= x1р1 + x2р2+…+ xnрn

Математическое ожидание служит характеристикой среднего значения случайной величины.

Свойства математического ожидания:

1)M(C)=C, где С-постоянная величина;

4)M(X•Y)=M(X) •M(Y), где X, Y – независимые случайные величины;

5)M(X±C)=M(X)±C, где С-постоянная величина;

Для характеристики степени рассеивания возможных значений дискретной случайной величины вокруг ее среднего значения служит дисперсия.

Определение: Дисперсией D(X) случайной величины Х называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:

1)D(C)=0, где С-постоянная величина;

2)D(X)>0, где Х – случайная величина;

3)D(C•X)=C2•D(X), где С-постоянная величина;

4)D(X+Y)=D(X)+D(Y), где X, Y – независимые случайные величины;

Для вычисления дисперсии часто бывает удобно пользоваться формулой:

где М(Х)=∑ xi2рi= x12р1 + x22р2+…+ xn2рn

Дисперсия D(X) имеет размерность квадрата случайной величины, что не всегда удобно. Поэтому в качестве показателя рассеяния возможных значений случайной величины используют также величину √D(X).

Определение: Средним квадратическим отклонением σ(Х) случайной величины Х называется квадратный корень из дисперсии:

Задача №2. Дискретная случайная величина Х задана законом распределения:

Найти Р2, функцию распределения F(x) и построить ее график, а также M(X),D(X), σ(Х).

Решение: Так как сумма вероятностей возможных значений случайной величины Х равна 1, то

Найдем функцию распределения F(х)=P(X 3, то F(х)=Р(Х=-1) + Р(Х=0)+ Р(Х=1)+ Р(Х=2)+Р(Х=3)= 0,1+0,1+0,3+0,2+0,3=1, т. к. в промежуток (-∞;х) попадают четыре значения x1=-1, x2=0,x3=1,х4=2 и х5=3.

0 при х≤-1,

Изобразим функцию F(x)графически (рис.3):

Найдем числовые характеристики случайной величины:

М(Х)=∑ xκрκ =x1р1 + x2р2+…+ xnрn

D(X)= ∑ x2κрκ –(M(X))2 = x21р1 + x22р2+…+ x2nрn –(M(X))2

≈1,2845.

§4. Биномиальный закон распределения

дискретной случайной величины, закон Пуассона.

Определение: Биномиальным называется закон распределения дискретной случайной величины Х – числа появлений события А в n независимых повторных испытаниях, в каждом из которых события А может наступить с вероятностью p или не наступить с вероятностью q=1-p. Тогда Р(Х=m)-вероятность появления события А ровно m раз в n испытаниях вычисляется по формуле Бернулли:

Математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины Х, распределенной по бинарному закону, находят, соответственно, по формулам:

Если число испытаний n очень велико, а вероятность появления события А в каждом испытании очень мала (р≤0,1), то для вычисления Р(Х=m) используют формулу Пуассона:

Тогда говорят, что случайная величина Х – распределена по закону Пуассона.

Так как вероятность р события А в каждом испытании мала, то закон распределения Пуассона называется законом средних явлений.

Задача№3. Составить закон распределения случайной величины Х-числа выпадений пятерки при трех бросаниях игральной кости. Вычислить M(X),D(X), σ(Х) этой величины.

Решение: Испытание состоит в одном бросании игральной кости. Так как кость бросается 3 раза, то число испытаний n=3.

Читайте также:  Из чего сделать чехол

Вероятность события А – «выпадение пятерки» в каждом испытании одна и та же и равна 1/6, т. е. Р(А)=р=1/6, тогда Р(А)=1-p=q=5/6, где

– «выпадения не пятерки».

Случайная величина Х может принимать значения: 0;1;2;3.

Вероятность каждого из возможных значений Х найдем по формуле Бернулли:

Т. о. закон распределения случайной величины Х имеет вид:

Найдем числовые характеристики случайной величины Х:

Задача№4. Станок-автомат штампует детали. Вероятность того, что изготовленная деталь окажется бракованной равна 0,002. Найти вероятность того, что среди 1000 отобранных деталей окажется:

а) 5 бракованных;

б) хотя бы одна бракованная.

Решение: Число n=1000 велико, вероятность изготовления бракованной детали р=0,002 мала, и рассматриваемые события (деталь окажется бракованной) независимы, поэтому имеет место формула Пуассона:

а)Найдем вероятность того, что будет 5 бракованных деталей (m=5):

б)Найдем вероятность того, что будет хотя бы одна бракованная деталь.

Событие А -«хотя бы одна из отобранных деталей бракованная» является противоположным событию -«все отобранные детали не бракованные».Следовательно, Р(А)=1-Р(). Отсюда искомая вероятность равна: Р(А)=1-Р1000(0)=1- e-2 • 20 = 1- e-2=1-0,13534≈0,865.

Задачи для самостоятельной работы.

1.1Дисперсная случайная величина Х задана законом распределения:

Найти р4, функцию распределения F(X) и построить ее график, а также M(X),D(X), σ(Х).

1.2.Дисперсная случайная величина Х задана законом распределения:

Найти р4, функцию распределения F(X) и построить ее график, а также M(X),D(X), σ(Х).

1.3. В коробке 9 фломастеров, из которых 2 фломастера уже не пишут. Наудачу берут 3 фломастера. Случайная величина Х – число пишущих фломастеров среди взятых. Составить закон распределения случайной величины.

1.4. На стеллаже библиотеки в случайном порядке расставлено 6 учебников, причем 4 из них в переплете. Библиотекарь берет наудачу 4 учебника. Случайная величина Х-число учебников в переплете среди взятых. Составить закон распределения случайной величины.

1.5.В билете две задачи. Вероятность правильного решения первой задачи равна 0,9, второй-0,7. Случайная величина Х- число правильно решенных задач в билете. Составить закон распределения, вычислить математическое ожидание и дисперсию этой случайной величины, а также найти функцию распределения F(x) и построить ее график.

1.6. Три стрелка стреляют по мишени. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,5, для второго-0,8, для третьего -0,7. Случайная величина Х – число попаданий в мишень, если стрелки делают по одному выстрелу. Найти закон распределения, M(X),D(X).

1.7. Баскетболист бросает мяч в корзину с вероятностью попадания при каждом броске 0,8. За каждое попадание он получает 10 очков, а в случае промаха очки ему не начисляют. Составить закон распределения случайной величины Х-числа очков, полученных баскетболистом за 3 броска. Найти M(X),D(X), а также вероятность того, что он получит более 10 очков.

1.8.На карточках написаны буквы, всего 5 гласных и 3 согласных. Наугад выбирают 3 карточки, причем каждый раз взятую карточку возвращают назад. Случайная величина Х-число гласных букв среди взятых. Составить закон распределения и найти M(X),D(X),σ(Х).

1.9.В среднем по 60% договоров страховая компания выплачивает страховые суммы в связи с наступлением страхового случая. Составить закон распределения случайной величины Х – числа договоров, по которым была выплачена страховая сумма среди наудачу отобранных четырех договоров. Найти числовые характеристики этой величины.

1.10.Радиостанция через определенные промежутки времени посылает позывные сигналы (не более четырех) до установления двусторонней связи. Вероятность получения ответа на позывной сигнал равна 0,3. Случайная величина Х-число посланных позывных сигналов. Составить закон распределения и найти F(x).

1.11.Имеется 3 ключа, из которых только один подходит к замку. Составить закон распределения случайной величины Х-числа попыток открывания замка, если испробованный ключ в последующих попытках не участвует. Найти M(X),D(X).

1.12.Производятся последовательные независимые испытания трех приборов на надежность. Каждый следующий прибор испытывается только в том случае, если предыдущий оказался надежным. Вероятность выдержать испытание для каждого прибора равна 0,9. Составить закон распределения случайной величины Х-числа испытанных приборов.

1.13.Дискретная случайная величина Х имеет три возможные значения: х1=1, х2,х3, причем х1 5

1.2. р4=0,1; 0 при х≤-1,

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *