0

Для чего используется суперкомпьютер

Модели с огромной производительностью, укомплектованные тысячами процессоров и десятками гигабайт ОЗУ, называются суперкомпьютерами. Самые мощные можно найти в списке TOP500, где первые 5 мест занимают американские модели Summit и Sierra, китайские ЭВМ Sunway TaihuLight и Тяньхэ-2, а также швейцарский Piz Daint.

Что такое суперкомпьютер

СуперЭВМ – название, которое получают специализированные вычислительные машины, превосходящие по характеристикам и скорости вычисления большинство обычных компьютеров.

Суперкомпьютер состоит из большого количества многоядерных систем, объединенных в общую систему для получения высокой производительности. Еще одно отличие от обычных ПК – большие размеры. Техника располагается в нескольких помещениях, занимая целые этажи и здания.

Первым настоящим суперкомпьютером считается собранный в 1974 году в США ПК Cray-1. Благодаря поддержке векторных операций модель выполняла до 180 млн вычислений с плавающей точкой в секунду (флопс). Большая часть суперЭВМ по-прежнему собирается и используется в Соединенных Штатах, следующими по количеству такой техники идут Китай и Япония.

Назначение суперкомпьютеров

Суперкомпьютеры решают разнообразные задачи – от сложных математических расчетов и обработки огромных массивов данных до моделирования искусственного интеллекта. Есть модели, воспроизводящие «архитектуру» человеческого мозга. На СуперЭВМ проектируют промышленное оборудование и электронику, синтезируют новые материалы и делают научные открытия.

Автомобилестроительные компании используют суперкомпьютеры для имитации результатов краш-тестов, экономя средства на настоящих испытаниях. Подходит такая мощная техника и для разработки новых двигателей, позволяя моделировать специальный температурный режим и процессы деформации. С ее же помощью можно прогнозировать метеорологические явления и даже землетрясения.

1. Summit

Суперкомпьютер Summit, созданный американской компанией IBM для Национальной лаборатории в Окридже. Технику ввели в эксплуатацию летом 2018 года, заменив модель Titan, которая считалась самой производительной американской СуперЭВМ. Разработка лучшего современного суперкомпьютера обошлась американскому правительству в 200 млн долларов.

Устройство потребляет около 15 МВт электроэнергии – столько, сколько вырабатывает небольшая ГЭС. Для охлаждения вычислительной системы используется 15,1 кубометра циркулирующей по трубкам воды. Сервера IBM расположены на площади около 930 кв.м – территория, которую занимают 2 баскетбольные площадки. Для работы суперкомпьютера используется 220 км электрокабелей.

Производительность компьютера обеспечивается 9216 процессорами модели IBM POWER9 и 27648 графическими чипами Tesla V100 от Nvidia. Система получила целых 512 Гбайт оперативной и 250 Пбайт постоянной памяти (интерфейс 2,5 Тбайт/с). Максимальная скорость вычислений – 200 Пфлопс, а номинальная производительность – 143,5 Пфлопс.

По словам американских ученых, запуск в работу модели Summit позволил повысить вычислительные мощности в сфере энергетики, экономическую конкурентоспособность и национальную безопасность страны. Среди задач, которые будут решаться с помощью суперкомпьютера, отмечают поиск связи между раковыми заболеваниями и генами живого организма, исследование причин появления зависимости от наркотиков и климатическое моделирование для составления точных прогнозов погоды.

2. Sierra

Второй американский суперкомпьютер Sierra (ATS-2) тоже выпущен в 2018 году и обошелся Соединенным Штатам примерно в 125 миллионов долларов. По производительности он считается вторым, хотя по среднему и максимальному уровню скорости вычислений сравним с китайской моделью Sunway TaihuLight.

Расположена СуперЭВМ на территории Национальной лаборатории имени Э. Лоуренса в Ливерморе. Общая площадь, которую занимает оборудование, составляет около 600 кв.м. Энергопотребление вычислительной системы – 12 МВт. И уже по соотношению производительность к расходу электричества компьютер заметно обогнал конкурента из КНР.

В системе используется 2 вида процессоров – серверные ЦПУ IBM Power 9 и графические Nvidia Volta. Благодаря этим чипам удалось повысить и энергоэффективность, и производительность. 4320 узлов со 190 тысячами ядер обеспечивают вычисления на скорости 94,64 петафлопс. Максимальная производительность – 125,712 Пфлопс или 125 квадриллионов операций с плавающей точкой в секунду.

Новую систему предполагается использовать в научных целях. В первую очередь – для расчетов в области создания ядерного оружия, заменяя вычислениями подземные испытания. Инженерные расчеты с помощью Sierra позволят разобраться и с ключевыми вопросами в области физики, знание которых позволит совершить ряд научных открытий.

3. Sunway TaihuLight

Китайская СуперЭВМ удерживала лидирующую позицию в рейтинге TOP500 с 2016 до 2018 года. В соответствии с тестами LINPACK ее считали самым производительным суперкомпьютером, минимум в полтора раза превосходящим ближайшего конкурента и втрое опережающим самую производительную американскую модель Titan. Разработка и строительство вычислительной системы обошлось в 1,8 млрд. юаней или 270 млн долларов. Инвесторами проекта были правительство Китая, администрация китайской провинции Цзянсу и города Уси.

Суперкомпьютер потребляет 15,3 МВт электроэнергии и занимает площадь 605 кв.м. Расположен он на территории города Уси, в национальном суперкомпьютерном центре. Название модели дали в честь расположенного рядом озера Тайху, третьего по величине пресноводного водоема Китая.

Наличие в конструкции ЭВМ 41 тысячи процессоров SW26010 и 10,6 миллиона ядер позволяет ей проводить расчеты со скоростью 93 Пфлопс. Максимальная производительность – 125 Пфлопс. Переход на чипы китайского производства потребовал от разработчиков создания полностью новой системы. До этого предполагалось в 2 раза повысить производительность другой китайской СуперЭВМ Тяньхэ-2, но эти намерения пришлось изменить из-за проблем с поставками процессоров Intel из США.

Модель Sunway TaihuLight применяется для выполнения сложных вычислений в области медицины, горнодобывающей промышленности и производстве. С помощью вычислительной машины прогнозируют погоду, исследуют новые лекарства и анализируют «большие данные» – массивы информации, обработать которые не получится даже у самого мощного серийного компьютера.

4. Тяньхэ-2

Суперкомпьютер Tianhe-2 («Млечный путь»), а, точнее, уже дополненная и модернизированная версия 2А, была разработана сотрудниками компании Inspur и научно-технического университета Народно-освободительной армии Китая. В июле 2013 года модель считалась самой производительной в мире и уступила пальму первенства только другому китайскому компьютеру TaihuLight. На сборку ЭВМ потратили около 200 млн долларов.

Сначала вычислительная система находилась на территории университета, а затем была перемещена в суперкомпьютерный центр в Гуанчжоу. Общая площадь, которую она занимает – около 720 кв. м. Энергопотребление модели составляет 17,8 МВт, что делает ее использование менее выгодным по сравнению с более современными версиями.

Техника построена на базе 80 тысяч ЦПУ Intel Xeon и Xeon Phi. Объем оперативной памяти – 1400 Гбайт, количество вычислительных ядер – больше 3 миллионов. На суперкомпьютере установлена операционная система Kylin Linux. Первые показатели работы системы – 33,8 Пфлопс, современная модификация достигает скорости вычислений 61,4 Пфлопс, максимальная – 100,679 Пфлопс.

СуперЭВМ создали по требованию китайского правительства, его основными задачами являются расчеты для проектов национального масштаба. С помощью системы решаются вопросы безопасности Китая, выполняется моделирование и анализ большого количества научной информации.

5. Piz Daint

Суперкомпьютер Piz Daint достаточно долго (с 2013 до 2018 года) занимал третье место в рейтинге самых мощных вычислительных систем в мире. В то же время он остается самым производительным компьютером Европы. Стоимость проекта составила около 40 млн швейцарских франков.

Читайте также:  Древо жизни рисунок схема

Модель получила название в честь одноименной территории в Швейцарских Альпах и находится в национальном суперкомпьютерном центре. Оборудование, из которого состоит СуперЭВМ, располагается в 28 стойках. Для работы техники требуется 2,3 МВт электричества, и по этому показателю Piz Daint обеспечивает лучшую удельную производительность – 9,2 Пфлопс/МВт.

В составе ЭВМ есть другой суперкомпьютер Piz Dora, сначала работавший отдельно. После объединения мощностей швейцарские разработчики получили вычислительную систему с 362 тысячами ядер (процессоры Xeon E5-2690v3) номинальной производительностью 21,23 Пфлопс. Максимальная скорость работы – 27 Пфлопс.

Основные задачи суперкомпьютера – расчеты для исследований в области геофизики, метеорологии, физике и климатологии. Одно из приложений для ЭВМ, COSMO, представляет собой метеорологическую модель и используется метеослужбами Германии и Швейцарии для получения высокоточных прогнозов погоды.

Зачем нужны суперкомпьютеры. Российский производитель суперкомпьютеров – компания «Т-Платформы»

Это первый материал из цикла, посвященного суперкомпьютерам и работе на этом рынке российской компании "Т-Платформы". Материалы созданы на основании интервью с Александром Голубом, директором департамента разработки "Т-Платформ", и Сергеем Клейменовым, главным специалистом по интеграции и внедрению, который занимал пост технического руководителя (так называемый "technical lead") проекта по строительству суперкомьютера JURECA.

1. Российский производитель суперкомпьютеров – компания "Т-Платформы"
2. Как построить суперкомпьютер? Гонки технологий, сроки и скорость внедрения как решающий фактор
3. Как построить суперкомпьютер? Свои технологии или покупные, собственная разработка плат как ключ к успеху, интеграция против разъемов и сложности производства в России
4. "Т-Платформы" – крупнейшие проекты недавнего времени, другие направления деятельности
5. Суперкомпьютер "Т-Платформ" в немецком суперкомпьютерном центре Юлиха
6. Технические особенности суперкомпьютера JURECA производства "Т-Платформ"
7. Программная часть суперкомпьютера JURECA, управление ресурсами, обслуживание и основные результаты проекта для "Т-Платформ".

Основным направлением деятельности компании "Т-Платформы" является создание суперкомпьютеров как в России, так и за рубежом, хотя сейчас компания активно работает и на других направлениях, в первую очередь это создание и продажа серверов общего назначения, созданных на базе суперкомпьютерных технологий.

Одна из основных особенностей компании состоит в том, что в "Т-Платформах" самостоятельно разрабатывают дизайн шасси, платформ и даже материнских плат и плат расширения (что требует хорошего знания элементной базы и взаимодействия с производителями чипов), а также самостоятельно пишут все управляющее ПО, начиная от микропрограммы для контроллера управления серверной платой (BMC), BIOS-а, плат управления шасси и заканчивая программами для управления ресурсами суперкомпьютеров.

Что такое суперкомпьютеры и зачем они нужны?

Суперкомпьютер представляет собой систему с чрезвычайно высокой вычислительной производительностью, основная сфера применения этих систем – математическое моделирование физических, биологических и любых других процессов. Переход на использование суперкомпьютеров для задач моделирования – это выход на новый уровень по скорости и эффективности разработки, поэтому количество научных коллективов и частных компаний, использующих в своей работе суперкомпьютеры, постоянно растет.

Моделирование с помощью суперкомпьютеров применяется в самых разных проектах, как чисто научных (моделирование природных процессов, исследования космоса, моделирование ядерных взрывов, исследования в области биологии, включая моделирование работы органов человека, фармакологии, и во многих других областях), так и вполне прикладных – например, обкатка новой модели двигателя для автомобиля, моделирование процессов деформации, температурных режимов и пр. Также суперкомпьютеры значительно ускоряют решение задач численными методами.

Время – деньги, или почему ускорение зачастую важнее, чем удешевление

В современном мире время играет не меньшую, а иногда и большую роль, чем деньги. Иногда время вообще становится единственным решающим фактором: если продукт или технология не появились на рынке в нужный срок, то они уже никому не нужны, даже если по остальным направлениям все выглядит неплохо. Математическое моделирование и численные методы стали одним из способов радикально сократить затраты времени и денег на разработку новых технологий и продуктов.

Традиционная физическая модель для продува. Источник

Например, одним из самых сложных и дорогостоящих процессов при создании нового самолета является разработка оптимального планера. Раньше для этого приходилось вручную строить десятки моделей, а потом продувать их в аэродинамической трубе. Компьютерное моделирование позволяет сравнить разные варианты, найти оптимальный и "довести" его, не прибегая постройке моделей и натурным испытаниям. Еще больше выгод компьютерное моделирование предлагает в ситуациях, когда есть несколько вариантов решения и заранее непонятно, какой из них лучше.

Компьютерная модель самолета для анализа внешних воздействий. Источник

К компьютерной модели можно всегда вернуться, чтобы оценить, как она будет вести себя в других условиях эксплуатации. Например, посмотреть, как ракетный двигатель будет работать на другом виде топлива – без создания дорогой и сложной натурной модели.

Пример ПО для расчета аэродинамики. Источник

Наконец, компьютерное моделирование не просто ускоряет разработку отдельного проекта – оно позволяет накапливать новые знания, уточнять параметры взаимодействия моделей и окружающей среды, создавая задел на будущее. Будущие модели будут точнее и лучше, а реализация проектов – быстрее и дешевле.

На сегодня компьютерное моделирование успешно применяется в самых разных отраслях экономики. Например, в геологии суперкомпьютер с помощью специализированного ПО для геологических расчетов позволяет с достаточно высокой точностью оценивать объемы месторождений, планирование добычи и пр. Другой вопрос, что математическое моделирование – это инструмент, а направление и эффективность его использования зависит от тех, кто этим инструментом пользуется. Например, есть общеизвестный пример: использование компьютерного моделирования позволило автопроизводителям более точно рассчитывать износ узлов и агрегатов автомобиля, точно устанавливая срок его службы и вынуждая потребителей покупать новую модель.

Кто использует моделирование с помощью суперкомпьютеров

Компьютерное моделирование широко применяется подавляющим большинством компаний, занимающихся разработкой новых технологий и продуктов, а количество специализированного ПО для моделирования на все случаи жизни достаточно велико. Правда, даже сегодня многие компании не осознают до конца преимуществ высокопроизводительных систем и не исследуют возможности их использования для своих задач. Много где моделирование до сих пор осуществляется на рабочих станциях, из-за чего выполнение проектов занимает довольно много времени.

ПО для моделирования ракет. Источник

Сегодня ресурсы суперкомпьютеров в значительной степени используются для решения научных задач, а главным заказчиком является научное сообщество. Суперкомпьютеры обслуживают научные расчеты в огромном количестве самых разных областей науки, таких как биотехнологии (например, это одно из популярных направлений для суперкомпьютеров в МГУ), фармацевтика, фармакология, аэродинамика и авионика, гидродинамика и кораблестроение, двигателестроение, ракетные двигатели и ракетные технологии, энергетика, добыча полезных ископаемых и огромное количество других направлений.

ПО для работы с генетической информацией ДНК. Источник

Сверхсовременный компьютер "Ломоносов-2", построенный компанией "Т-Платформы" для МГУ, постоянно занят, как и ранее построенный, но остающийся в строю "Ломоносов" – к ним стоит внушительная очередь на расчеты из научных проектов. Примерно та же картина и для других суперкомпьютеров – как у нас, так и в западных странах.

Впрочем, преимущества суперкомпьютера раскрываются в решении крупных прикладных и научных задач. Для распространенных прикладных задач существует специализированное ПО: пакеты ANSYS, Solidworks (эти компании имеют большое количество продуктов под решение разных задач), Abaqus, Deform 3D, Flow Vision, Open FOAM, Autodesk Simulation и многие другие. Разные продукты оптимизированы под решение разных типов задач, некоторые производители поддерживают широкую линейку продуктов, некоторые сосредотачиваются на определенных направлениях.

А вот при решении задач в рамках научных исследований ПО для расчетов часто приходится разрабатывать самостоятельно.

Пример расчета аэродинамики в ПО ANSYS. Источник

Также нужно понимать, что суперкомпьютер – очень дорогая игрушка, и следует трезво оценивать экономическую эффективность его использования. Строить свой собственный суперкомпьютер имеет смысл, если у компании постоянно есть задачи и проекты, требующие значительных вычислительных ресурсов. Например, Росгидромету для моделирования погодных условий постоянно требуются вычислительные ресурсы, и в этом случае вполне логично иметь собственное решение. Если же серьезные вычислительные ресурсы нужны время от времени, то более выгодно брать эти ресурсы в аренду.

Читайте также:  Волна мобайл крым отзывы

Рынок суперкомпьютеров – уникальный рынок со своими технологиями, продуктами и решениями

Рынок суперкомпьютеров заметно отличается от рынка серверов общего назначения: здесь используются свои уникальные технологии, свои технические решения, свои серверные платформы и конфигурации, свои виды интерконнекта (связь между серверами) и т.д.

Средний размер системы на этом рынке относительно небольшой: проект в 1000 блейд-систем считается крупным. Но при этом каждый проект имеет свои уникальные особенности, потому что практически везде заказчик выдвигает особые требования: специфические конфигурации, особые виды интерконнекта, своя конструкция стоек, своя конфигурация СХД, особенности помещения и т.д. В результате, каждый проект требует отдельной работы архитекторов и инженеров кластерных решений, которые создают проект с учетом специфики заказчика.

Суперкомпьютер JURECA – один из самых мощных проектов "Т-Платформ".

Кроме того, проекты часто требуют решения различных инженерных задач. В первую очередь это создание инженерных систем для обеспечения работы суперкомпьютера, в первую очередь надежного энергоснабжения и охлаждения. Очень часто требуется адаптировать эти системы (а иногда и вычислительные системы) под особенности помещения.

В "Т-Платформах" есть специалисты, работающие с инженерными системами. Впрочем, они относятся к проектному отделу, а Александр Голуб руководит подразделением разработки. По его словам, он отвечает за создание "кирпичей, из которых строят суперкомпьютеры" – т.е. за разработку и запуск в производство вычислительных серверов и других аппаратных компонентов – плат расширения и пр.

Впрочем, уникальные особенности проекта редко составляют более 15% от общего объема работ. Выбор на рынке все же ограничен, поэтому с подавляющим большинством технологий, продуктов и решений, присутствующих на рынке, специалисты компании уже знакомы, так как сталкивались раньше. Хотя изредка, когда речь идет о совсем экзотических или ультрасовременных технологиях, приходится брать их отдельно и устраивать дополнительное тестирование на своих мощностях, чтобы понять, что это и как оно работает.

На сегодня компанией "Т-Платформы" накоплен огромный объем знаний и опыта, которые позволяют ей оставаться одним из лидеров рынка суперкомпьютеров.

Суперкомпью́тер (англ. Supercomputer , СверхЭВМ, СуперЭВМ, сверхвычисли́тель) — специализированная вычислительная машина, значительно превосходящая по своим техническим параметрам и скорости вычислений большинство существующих в мире компьютеров.

Как правило, современные суперкомпьютеры представляют собой большое число высокопроизводительных серверных компьютеров, соединённых друг с другом локальной высокоскоростной магистралью для достижения максимальной производительности в рамках подхода распараллеливания вычислительной задачи.

Содержание

Определение понятия суперкомпьютер [ править | править код ]

Определение понятия «суперкомпьютер» не раз было предметом многочисленных споров и обсуждений.

Чаще всего авторство термина приписывается Джорджу Майклу (George Anthony Michael) и Сиднею Фернбачу (S > ( англ. ) рассказывала о «супервычислениях», выполнявшихся при помощи табулятора IBM, собранного по заказу Колумбийского университета.

В общеупотребительный лексикон термин «суперкомпьютер» вошёл благодаря распространённости компьютерных систем Сеймура Крэя, таких как, CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3 ( англ. ) и Cray-4 ( англ. ) . Сеймур Крэй разрабатывал вычислительные машины, которые по сути становились основными вычислительными средствами правительственных, промышленных и академических научно-технических проектов США с середины 60-х годов до 1996 года. Не случайно в то время одним из популярных определений суперкомпьютера было следующее: — «любой компьютер, который создал Сеймур Крэй». Сам Крэй никогда не называл свои детища суперкомпьютерами, предпочитая использовать вместо этого обычное название «компьютер».

Компьютерные системы Крэя удерживались на вершине рынка в течение 5 лет с 1985 по 1990 годы. 80-е годы XX века охарактеризовались появлением множества небольших конкурирующих компаний, занимающихся созданием высокопроизводительных компьютеров, однако к середине 90-х большинство из них оставили эту сферу деятельности, что даже заставило обозревателей заговорить о «крахе рынка суперкомпьютеров». На сегодняшний день суперкомпьютеры являются уникальными системами, создаваемыми «традиционными» игроками компьютерного рынка, такими как IBM, Hewlett-Packard, NEC и другими, которые приобрели множество ранних компаний, вместе с их опытом и технологиями. Компания Cray по-прежнему занимает достойное место в ряду производителей суперкомпьютерной техники.

Из-за большой гибкости самого термина до сих пор распространены довольно нечёткие представления о понятии «суперкомпьютер». Шутливая классификация Гордона Белла и Дона Нельсона, разработанная приблизительно в 1989 году, предлагала считать суперкомпьютером любой компьютер, весящий более тонны. Современные суперкомпьютеры действительно весят более 1 тонны, однако далеко не каждый тяжёлый компьютер достоин чести считаться суперкомпьютером. В общем случае, суперкомпьютер — это компьютер значительно более мощный, чем доступные для большинства пользователей машины. При этом скорость технического прогресса сегодня такова, что сегодняшний лидер легко может стать завтрашним ведомым.

Архитектура также не может считаться признаком принадлежности к классу суперкомпьютеров. Ранние компьютеры CDC были обычными машинами, всего лишь оснащёнными быстрыми для своего времени скалярными процессорами, скорость работы которых была в несколько десятков раз выше, чем у компьютеров, предлагаемых другими компаниями.

Большинство суперкомпьютеров 70-х оснащались векторными процессорами, а к началу и середине 80-х небольшое число (от 4 до 16) параллельно работающих векторных процессоров практически стало стандартным суперкомпьютерным решением. Конец 80-х и начало 90-х годов охарактеризовались сменой магистрального направления развития суперкомпьютеров от векторно-конвейерной обработки к большому и сверхбольшому числу параллельно соединённых скалярных процессоров.

Массово-параллельные системы стали объединять в себе сотни и даже тысячи отдельных процессорных элементов, причём ими могли служить не только специально разработанные, но и общеизвестные и доступные в свободной продаже процессоры. Большинство массово-параллельных компьютеров создавалось на основе мощных процессоров с архитектурой RISC, наподобие PowerPC или PA-RISC.

В конце 90-х годов высокая стоимость специализированных суперкомпьютерных решений и нарастающая потребность разных слоёв общества в доступных вычислительных ресурсах привели к широкому распространению компьютерных кластеров. Эти системы характеризует использование отдельных узлов на основе дешёвых и широко доступных компьютерных комплектующих для серверов и персональных компьютеров и объединённых при помощи мощных коммуникационных систем и специализированных программно-аппаратных решений. Несмотря на кажущуюся простоту, кластеры довольно быстро заняли достаточно большой сегмент суперкомпьютерного рынка, обеспечивая высочайшую производительность при минимальной стоимости решений.

В настоящее время суперкомпьютерами принято называть компьютеры с огромной вычислительной мощностью («числодробилки» или «числогрызы»). Такие машины используются для работы с приложениями, требующими наиболее интенсивных вычислений (например, прогнозирование погодно-климатических условий, моделирование ядерных испытаний и т. п.), что в том числе отличает их от серверов и мэйнфреймов (англ. mainframe ) — компьютеров с высокой общей производительностью, призванных решать типовые задачи (например, обслуживание больших баз данных или одновременная работа с множеством пользователей).

Иногда суперкомпьютеры используются для работы с одним-единственным приложением, использующим всю память и все процессоры системы; в других случаях они обеспечивают выполнение большого числа разнообразных приложений.

История суперкомпьютеров [ править | править код ]

Одним из первых суперкомпьютеров считается Cray-1, созданный в 1974 году. С помощью поддержки векторных операций эта супер-ЭВМ достигала производительности в 180 миллионов операций в секунду над числами с плавающей точкой (FLOPS).

По применению суперкомпьютеров Россия сильно отстаёт от США, Китая, Европы и Японии. Если в 2018 г. доля России в мировом ВВП составила 1,8 %, то в мировой производительности суперкомпьютеров лишь 0,32 %. [1]

Читайте также:  Как в кореле изменить цвет картинки

Применение [ править | править код ]

Суперкомпьютеры используются во всех сферах, где для решения задачи применяется численное моделирование; там, где требуется огромный объём сложных вычислений, обработка большого количества данных в реальном времени, или решение задачи может быть найдено простым перебором множества значений множества исходных параметров (см. Метод Монте-Карло).

Совершенствование методов численного моделирования происходило одновременно с совершенствованием вычислительных машин: чем сложнее были задачи, тем выше были требования к создаваемым машинам; чем быстрее были машины, тем сложнее были задачи, которые на них можно было решать. Поначалу суперкомпьютеры применялись почти исключительно для оборонных задач: расчёты по ядерному и термоядерному оружию, ядерным реакторам. Потом, по мере совершенствования математического аппарата численного моделирования, развития знаний в других сферах науки — суперкомпьютеры стали применяться и в «мирных» расчётах, создавая новые научные дисциплины, как то: численный прогноз погоды, вычислительная биология и медицина, вычислительная химия, вычислительная гидродинамика, вычислительная лингвистика и проч., — где достижения информатики сливались с достижениями прикладной науки.

Ниже приведён далеко не полный список областей применения суперкомпьютеров:

  • Математические проблемы:
  • Криптография
  • Статистика
  • Физика высоких энергий:
  • процессы внутри атомного ядра, физика плазмы, анализ данных экспериментов, проведённых на ускорителях
  • разработка и совершенствование атомного и термоядерного оружия, управление ядерным арсеналом, моделирование ядерных испытаний
  • моделирование жизненного цикла ядерных топливных элементов, проекты ядерных и термоядерных реакторов
  • Наука о Земле:
  • прогноз погоды, состояния морей и океанов
  • предсказание климатических изменений и их последствий
  • исследование процессов, происходящих в земной коре, для предсказания землетрясений и извержений вулканов
  • анализ данных геологической разведки для поиска и оценки нефтяных и газовых месторождений, моделирование процесса выработки месторождений
  • моделирование растекания рек во время паводка, растекания нефти во время аварий
  • Вычислительная биология: фолдинг белка, расшифровка ДНК
  • Вычислительная химия и медицина: изучение строения вещества и природы химической связи как в изолированных молекулах, так и в конденсированном состоянии, поиск и создание новых лекарств
  • Физика:
  • газодинамика: турбины электростанций, горение топлива, аэродинамические процессы для создания совершенных форм крыла, фюзеляжей самолетов, ракет, кузовов автомобилей
  • гидродинамика: течение жидкостей по трубам, по руслам рек
  • материаловедение: создание новых материалов с заданными свойствами, анализ распределения динамических нагрузок в конструкциях, моделирование крэш-тестов при конструировании автомобилей
  • в качестве сервера для искусственных нейронных сетей[2][3]
  • создание принципиально новых способов вычисления и обработки информации (Квантовый компьютер[4][5] , Искусственный интеллект[6][7] )
  • Производительность [ править | править код ]

    Производительность суперкомпьютеров чаще всего оценивается и выражается в количестве операций над числами с плавающей точкой в секунду (FLOPS). Это связано с тем, что задачи численного моделирования, под которые и создаются суперкомпьютеры, чаще всего требуют вычислений, связанных с вещественными числами, зачастую с высокой степенью точности, а не целыми числами. Поэтому для суперкомпьютеров неприменима мера быстродействия обычных компьютерных систем — количество миллионов операций в секунду (MIPS). При всей своей неоднозначности и приблизительности, оценка во флопсах позволяет легко сравнивать суперкомпьютерные системы друг с другом, опираясь на объективный критерий.

    Первые суперкомпьютеры имели производительность порядка 1 кфлопс, то есть 1000 операций с плавающей точкой в секунду. В США компьютер, имевший производительность в 1 миллион флопсов (1 Мфлопс) (CDC 6600), был создан в 1964 году. Известно, что в 1963 году в московском НИИ-37 (позже НИИ ДАР) был разработан компьютер на основе модулярной арифметики с производительностью 2,4 млн оп/с. Это экспериментальный компьютер второго поколения (на дискретных транзисторах) Т340-А [8] (гл. конструктор Д. И. Юдицкий). Однако следует отметить, что прямое сравнение производительности модулярных и традиционных ЭВМ некорректно. Модулярная арифметика оперирует только с целыми числами. Представление вещественных чисел в модулярных ЭВМ возможно только в формате с фиксированной запятой, недостатком которого является существенное ограничение диапазона представления чисел.

    Планка в 1 миллиард флопс (1 Гигафлопс) была преодолена суперкомпьютерами NEC SX-2 в 1983 году с результатом 1.3 Гфлопс.

    Граница в 1 триллион флопс (1 Тфлопс) была достигнута в 1996 году суперкомпьютером ASCI Red.

    Рубеж 1 квадриллион флопс (1 Петафлопс) был взят в 2008 году суперкомпьютером IBM Roadrunner.

    В 2010-х годах несколькими странами ведутся работы, нацеленные на создание к 2020 году экзафлопсных компьютеров, способных выполнять 1 квинтиллион операций с плавающей точкой в секунду и потребляющих при этом не более нескольких десятков мегаватт. К 2021 году корпорации Intel и Cray планируют создать первую в США экзафлопсную систему под названием Aurora для Аргоннской национальной лаборатории Министерства энергетики США [9] [10] .

    Программное обеспечение суперкомпьютеров [ править | править код ]

    Наиболее распространёнными программными средствами суперкомпьютеров, так же, как и параллельных или распределённых компьютерных систем, являются интерфейсы программирования приложений (API) на основе MPI и PVM, и решения на базе открытого программного обеспечения, наподобие Beowulf и openMosix, позволяющего создавать виртуальные суперкомпьютеры даже на базе обыкновенных рабочих станций и персональных компьютеров. Для быстрого подключения новых вычислительных узлов в состав узкоспециализированных кластеров применяются технологии наподобие ZeroConf. Примером может служить реализация рендеринга в программном обеспечении Shake, распространяемом компанией Apple. Для объединения ресурсов компьютеров, выполняющих программу Shake, достаточно разместить их в общем сегменте локальной вычислительной сети.

    В настоящее время границы между суперкомпьютерным и общеупотребимым программным обеспечением сильно размыты и продолжают размываться ещё более вместе с проникновением технологий параллелизации и многоядерности в процессорные устройства персональных компьютеров и рабочих станций. Исключительно суперкомпьютерным программным обеспечением сегодня можно назвать лишь специализированные программные средства для управления и мониторинга конкретных типов компьютеров, а также уникальные программные среды, создаваемые в вычислительных центрах под «собственные», уникальные конфигурации суперкомпьютерных систем.

    Top500 [ править | править код ]

    Начиная с 1993, суперкомпьютеры ранжируют в списке Top500. Список составляется на основе теста LINPACK по решению системы линейных алгебраических уравнений, являющейся общей задачей для численного моделирования.

    Самым мощным суперкомпьютером в 2016 году по этому списку стал Sunway TaihuLight, работающий в национальном суперкомпьютерном центре Китая. Скорость вычислений, производимых им, составляет 93 петафлопс (10 в 15 степени вычислительных операций с плавающей запятой в секунду). По этому показателю он в два раза быстрее и в три раза эффективнее предыдущего рекордсмена — Tianhe-2, также разработанного в Китае и возглавлявшему список с 2013 года.

    Общее распределение по количеству суперкомпьютеров в разных частях света: 213 суперкомпьютера находится в Азии (217 в прошлогоднем списке), 175 в Америке (170 в прошлогоднем списке) и 104 в Европе (ранее 105);

    Распределение по количеству суперкомпьютеров в разных странах мира в июне 2018 года:

    • Китай — 206 [11]
    • США — 124
    • Япония — 36
    • Великобритания — 22
    • Германия — 21
    • Франция — 18
    • Нидерланды — 9
    • Южная Корея — 7
    • Ирландия — 7
    • Канада — 6
    • другие страны — 44 (включая Россию — 4, пик количества суперкомпьютерных систем в России пришелся на июнь 2011 года — 12 шт. [12] ).

    На всех используемых суперкомпьютерах на момент 2018 года используется операционная система Linux [13] . Linux стал использоваться на всех суперкомпьютерах списка с ноября 2017 года, вытеснив последним операционную систему UNIX OS.

    Из Linux-систем 64,2 % не детализируют дистрибутив, 12,6 % используют CentOS, 8,6 % — Cray Linux, 5 % — SUSE, 3 % — RHEL, 0,6 % — Scientific Linux, 0,6 % — Ubuntu;

    admin

    Добавить комментарий

    Ваш e-mail не будет опубликован. Обязательные поля помечены *