0

Дорожка жесткого диска это

Архитектура ЭВМ

Компоненты ПК

Интерфейсы

Мини блог

Самое читаемое

Sms рассылка бесплатная смс отправка через интернет world sms.

Дорожки и секторы

Дорожка — это одно “кольцо” данных на одной стороне диска. Дорожка записи на диске слишком велика, чтобы использовать ее в качестве единицы хранения информации. Во многих накопителях ее емкость превышает 100 тыс. байтов, и отводить такой блок для хранения небольшого файла крайне расточительно. Поэтому дорожки на диске разбивают на нумерованные отрезки, называемые секторами .

Количество секторов может быть разным в зависимости от плотности дорожек и типа накопителя. Например, дорожка гибких дисков может содержать от 8 до 36 секторов, а дорожка жесткого диска — от 380 до 700. Секторы, создаваемые с помощью стандартных программ форматирования, имеют емкость 512 байт, но не исключено, что в будущем эта величина изменится. Следует отметить один важный факт: для совместимости со старыми BIOS, независимо от реального количества секторов на дорожке, устройство должно выполнять трансляцию в режим 63 секторов на дорожке, принятый в адресации CHS.

Нумерация секторов на дорожке начинается с единицы, в отличие от головок и цилиндров, отсчет которых ведется с нуля. Например, дискета емкостью 1,44 Мбайт содержит 80 цилиндров, пронумерованных от 0 до 79, в дисководе установлены две головки (с номерами 0 и 1) и каждая дорожка цилиндра разбита на 18 секторов (1–18).

При форматировании диска в начале и конце каждого сектора создаются дополнительные области для записи их номеров, а также прочая служебная информация, благодаря которой контроллер идентифицирует начало и конец сектора. Это позволяет отличать неформатированную и форматированную емкости диска. После форматирования емкость диска уменьшается, и с этим приходится мириться, поскольку для обеспечения нормальной работы накопителя некоторое пространство на диске должно быть зарезервировано для служебной информации. Стоит, однако, отметить, что в новых дисках используется форматирование без идентификатора, т.е. не проставляются отметки начала и конца каждого из секторов. Это позволяет использовать немного больше пространства для хранения реальных данных.

В начале каждого сектора записывается его заголовок (или префикс), по которому определяется начало и номер сектора, а в конце — заключение (или суффикс), в котором находится контрольная сумма, необходимая для проверки целостности данных. В вышеупомянутой системе адресации без идентификаторов начало и конец каждого из секторов определяется на основании импульсов генератора тактовой частоты.

Помимо указанных областей служебной информации, каждый сектор содержит область данных емкостью 512 байт. При низкоуровневом (физическом) форматировании всем байтам данных присваивается некоторое значение, например F6h. Электронные схемы накопителей с большим трудом справляются с кодированием и декодированием некоторых шаблонов, поскольку эти шаблоны используются только при тестировании дисководов, выполняемом производителем в процессе первоначального форматирования. Используя специальные тестовые шаблоны, можно выявить ошибки, которые не обнаруживаются с помощью обычных шаблонов данных.

Примечание!

Заголовки и суффиксы секторов не зависят от операционной и файловой систем, а также от файлов, хранящихся на жестком диске. Помимо этих элементов, существует множество промежутков в секторах, между секторами на каждой дорожке и между дорожками, но ни один из этих промежутков не может быть использован для записи данных. Промежутки создаются во время форматирования на низком (физическом) уровне, при котором удаляются все записанные данные. На жестком диске промежутки выполняют точно такие же функции, как и на магнитофонной кассете, где они используются для разделения музыкальных записей. Начальные, завершающие и промежуточные пробелы представляют собой именно то пространство, которое определяет разницу между форматной и неформатной емкостью диска. Например, емкость 4-мегабайтовой дискеты (3,5-дюйма) после форматирования “уменьшается” до 2,88 Мбайт (форматная емкость). Дискета емкостью 2 Мбайт (до форматирования) имеет форматную емкость 1,44 Мбайт. Жесткий диск Seagate ST-4038, имеющий неформатную емкость 38 Мбайт, после форматирования “уменьшается” до 32 Мбайт (форматная емкость).

Форматирование низкого уровня современных жестких дисков ATA/IDE и SCSI выполняется еще на заводе, поэтому изготовитель указывает только форматную емкость диска. Тем не менее практически на всех дисках имеется некоторое зарезервированное пространство для управления данными, которые будут записаны на диске. Как видите, утверждать, что размер любого сектора равен 512 байт, — не вполне корректно. На самом деле в каждом секторе можно записать 512 байт данных, но область данных — это только часть сектора. Каждый сектор на диске обычно занимает 571 байт, из которых под данные отводится только 512 байт. В различных накопителях пространство, отводимое под заголовки и суффиксы, может быть разным, но, как правило, сектор имеет размер 571 байт. Как уже говорилось, многие современные диски используют схему разметки без идентификаторов заголовков секторов, что высвобождает дополнительное пространство для данных.

Для наглядности представьте, что секторы — это страницы в книге. На каждой странице содержится текст, но им заполняется не все пространство страницы, так как у нее есть поля (верхнее, нижнее, правое и левое). На полях помещается служебная информация, например названия глав (на диске это соответствует номерам дорожек и цилиндров) и номера страниц (что соответствует номерам секторов). Области на диске, аналогичные полям на странице, создаются во время форматирования диска; тогда же в них записывается и служебная информация. Кроме того, во время форматирования диска области данных каждого сектора заполняются фиктивными значениями. Отформатировав диск, можно записывать информацию в области данных обычным образом. Информация, которая содержится в заголовках и заключениях сектора, не меняется во время обычных операций записи данных. Изменить ее можно, только переформатировав диск.

В таблице в качестве примера приведен формат дорожки и сектора стандартного жесткого диска, имеющего 17 секторов на дорожке. Из таблицы видно, что “полезный” объем дорожки примерно на 15% меньше возможного.

Эти потери характерны для большинства накопителей, но для разных моделей они могут быть различными. Ниже подробно анализируются данные, представленные в табл. 9.2. Послеиндексный интервал нужен для того, чтобы при перемещении головки на новую дорожку переходные процессы (установка) закончились прежде, чем она окажется перед первым сектором. В этом случае его можно начать считывать сразу, не дожидаясь, пока диск совершит дополнительный оборот.

Послеиндексный интервал далеко не всегда обеспечивает время, достаточное для перемещения головки. В этом случае накопитель получает дополнительное время за счет смещения секторов на различных дорожках, которое приводит к задержке появления первого сектора. Другими словами, процесс форматирования низкого уровня приводит к смещению нумерации секторов, в результате чего секторы на соседних дорожках, имеющие одинаковые номера, смещаются друг относительно друга. Например, сектор 9 одной дорожки находится рядом с сектором 8 следующей дорожки, который, в свою очередь, располагается бок о бок с сектором 7 следующей дорожки, и т.д. Оптимальная величина смещения определяется соотношением частоты вращения диска и радиальной скорости головки.

Читайте также:  В каком приложении делается презентация

Примечание!

Идентификатор сектора (ID) состоит из полей записи номеров цилиндра, головки и сектора, а также контрольного поля CRC для проверки точности считывания информации ID.

В большинстве контроллеров седьмой бит поля номера головки используется для маркировки дефектных секторов в процессе форматирования низкого уровня или анализа поверхности. Однако такой метод не является стандартным, и в некоторых устройствах дефектные секторы помечаются иначе. Но, как правило, отметка делается в одном из полей идентификатора сектора. Интервал включения записи следует сразу за байтами CRC; он гарантирует, что информация в следующей области данных будет записана правильно. Кроме того, он служит для завершения анализа контрольной суммы (CRC) идентификатора сектора.

В поле данных можно записать 512 байт информации. За ним располагается еще одно поле CRC для проверки правильности записи данных. В большинстве накопителей размер этого поля составляет 2 байт, но некоторые контроллеры могут работать и с более длинными полями кодов коррекции ошибок (Error Correction Code — ECC). Записанные в этом поле байты кодов коррекции ошибок позволяют при считывании обнаруживать и исправлять некоторые ошибки. Эффективность этой операции зависит от выбранного метода коррекции и особенностей контроллера. Интервал отключения записи позволяет полностью завершить анализ байтов ECC (CRC).

Интервал между записями необходим для того, чтобы застраховать данные следующего сектора от случайного стирания при записи в предыдущий сектор. Это может произойти, если при форматировании диск вращался с частотой, несколько меньшей, чем при последующих операциях записи. При этом сектор, естественно, всякий раз будет немного длиннее. Поэтому, чтобы он не выходил за установленные при форматировании границы, их слегка “растягивают”, вводя упомянутый интервал. Его реальный размер зависит от разности частот вращения диска при форматировании дорожки и при каждом обновлении данных.

Предындексный интервал необходим для компенсации неравномерности вращения диска вдоль всей дорожки. Размер этого интервала зависит от возможных значений частоты вращения диска и сигнала синхронизации при форматировании и записи.

Информация, записываемая в заголовке сектора, имеет огромное значение, поскольку содержит данные о номере цилиндра, головки и сектора. Все эти сведения (за исключением поля данных, байтов CRC и интервала отключения записи) записываются на диск только при форматировании низкого уровня.

Основным типом устройства, которое используется в современных вычислительных системах для хранения файлов, являются дисковые накопители. Эти устройства предназначены для считывания и записи данных на жесткие и гибкие магнитные диски.

Дисковая память основана на двух вещах: технологии записи и быстром доступе.

Технология записи представляет магнитную запись. Она основана на том факте, что железо и некоторые другие материалы можно намагнитить. Грубо говоря, магнитное поле записывается в железо.

Для записи информации на магнитную поверхность дисков применяется следующий способ. Поверхность рассматривается как последовательность точечных позиций, каждая из которых считается битом и может быть установлена в магнитный эквивалент нуля и единицы. Поскольку положения точечных позиций определяются неточно, для записи требуются заранее нанесенные метки, которые помогают записывающему устройству находить позиции записи. Необходимость таких синхронизирующих меток является одной из причин того, почему диски должны быть отформатированы, прежде чем их можно будет использовать.

Вторым ключевым фактором хранения данных на дисках является механизм быстрого доступа к диску. Быстрый доступ к любой части поверхности обеспечивают два обстоятельства. Первым из них является вращение. Благодаря быстрому вращению диска задержка при прохождении данной точкой любой части окружности невелика. Скорость вращения жестких дисков составляет 3600 – 7200 оборотов в минуту, т.е. один оборот длится 1/60 (1/120) секунды.

При объединении двух факторов (перемещение головки считывания/записи поперек диска и вращение диска под головкой) обеспечивается быстрый доступ к любой части диска. Именно поэтому компьютерные диски называются памятью с произвольным доступом; можно обратиться к любой части записанных данных без последовательного прохождения всей записанной информации.

Каждая из концентрических окружностей диска называется дорожкой. Поверхность диска разбивается на дорожки, начиная с внешнего края, а число дорожек зависит от типа диска. Например, гибкий диск 3,5 дюйма 1,44 Мбайт имеет 80 дорожек. Число дорожек жесткого диска 300 – 1000 и более. Независимо от числа дорожек они идентифицируются номером, начиная с нулевой внешней дорожки.

Аналогично разбиению поверхности диска на дорожки окружность дорожки также разбивается на участки, называемые секторами (sectors), или блоками (blocks). Число секторов на дорожке определяется типом и форматом диска. Например, рассматриваемый нами гибкий диск 3,5 дюйма 1,44 Мбайт имеет на дорожке 18 секторов, а диск 3,5 дюйма 2,88 Мбайт – 36 секторов. Число секторов на дорожке жестких дисков обычно составляет 17.

Для любого конкретного диска размер всех секторов фиксирован. ПК могут работать с несколькими размерами секторов от 128 до 1024 байт, но размер сектора в 512 байт стал стандартным и производители ПК редко отходят от такого размера. Взаимосвязь между дорожками и секторами показана на рис. 11.6.

Во всех дисковых операциях чтения и записи данных участвуют только полные секторы. Секторы на дорожке, как и дорожки на поверхности диска, определяются номерами, начиная с единицы, а не с нуля. (Сектор с нулевым номером на каждой дорожке резервируется для идентификации, а не для хранения данных).

Еще одно измерение диска – число сторон (или поверхностей). Если гибкий диск имеет две стороны, накопители на жестких дисках содержат часто более одного собственно диска, поэтому число сторон оказывается более двух. Стороны диска идентифицируются также номером, начиная с нуля. Устройство накопителя с двумя дисками приведено на рис. 11.7.

Иногда удобно выделить совокупность всех дорожек, по одной на каждой стороне, находящихся на одинаковом расстоянии от центра диска. Эта совокупность называется цилиндром. В накопителе с двумя дисками (рис.11.7) каждый цилиндр состоит из четырех дорожек.

Зная все приведенные размеры, нетрудно определить размер, или емкость, накопителя:

Число сторон · число дорожек ·число секторов на дорожке ·


В результате такого умножения получается так называемая сырая емкость диска. Разумеется часть этой емкости расходуется на служебную информацию. Однако полученное число, по сути, определяет емкость диска: именно эту, или близкую к ней емкость сообщают большинство дисковых утилит.

Сектор – наименьшая адресуемая единица обмена данными дискового устройства с оперативной памятью. Для того чтобы контроллер мог найти на диске нужный сектор, необходимо задать ему все составляющие адреса сектора: номер цилиндра, номер поверхности и номер сектора.

Читайте также:  Инст мобильная версия вход

Операционная система при работе с диском использует, как правило, собственную единицу дискового пространства, называемую кластером (cluster)[1]. При создании файла место на диске ему выделяется кластерами. Например, если файл имеет размер 2560 байт, а размер кластера в файловой системе определен в 1024 байта, то файлу будет выделено на диске 3 кластера.

Дорожки и секторы создаются в результате выполнения процедуры физического, или низкоуровневого, форматирования диска, предшествующей использованию диска. Для определения границ блоков на диск записывается идентификационная информация. Низкоуровневый формат диска не зависит от типа операционной системы, которая этот диск будет использовать.

Разметку диска под конкретный тип файловой системы выполняют процедуры высокоуровневого, или логического, форматирования. При высокоуровневом форматировании определяется размер кластера и на диск записывается информация, необходимая для работы файловой системы, в том числе информация о доступном и неиспользуемом пространстве, о границах областей, отведенных под фай- лы и каталоги, информация о поврежденных областях. Кроме того, на диск записывается загрузчик операционной системы – небольшая программа, которая начинает процесс инициализации операционной системы после включения питания или рестарта компьютера.

Прежде чем форматировать диск под определенную файловую систему, он может быть разбит на разделы. Разделы требуются в основном для того, чтобы на одном диске могли одновременно сосуществовать несколько операционных систем. ОС используют одинаковое понятие раздела, каждая имеет программу по созданию и удалению разделов на диске. Какой бы программой не был создан раздел, другая операционная система должна опознавать его границы, даже если не может опознать его содержимого. В каждом разделе «живет» своя операционная система и , как правило, она не выходит за рамки своего раздела. Хотя часто ОС может управлять не одним, а по крайней мере 2 (системы Windows) или более (системы UNIX) разделами.

Итак, раздел – это непрерывная область диска, находящаяся под управлением некоторой ОС и которую операционная система представляет пользователю как логическое устройство (используются также названия логический диск и логический раздел). Логическое устройство функционирует так, как если бы это был отдельный физический диск. В одном разделе может находиться либо один логический диск, либо несколько. Именно с логическими устройствами работает пользователь, обращаясь к ним по символьным именам, используя, например, как в системах Windows, обозначения А:, В:, С:,SYS и т. п. Операционные системы разного типа используют единое для всех них представление о разделах, но создают на его основе логические устройства, специфические для каждого типа ОС. Так же как файловая система, с которой работает одна ОС, в общем случае не может интерпретироваться ОС другого типа, логические устройства не могут быть использованы операционными системами разного типа. На каждом логическом устройстве может создаваться только одна файловая система.

В частном случае, когда все дисковое пространство охватывается одним разделом, логическое устройство представляет физическое устройство в целом. Если диск разбит на несколько разделов, то для каждого из этих разделов может быть создано отдельное логическое устройство. Логическое устройство может быть создано и на базе нескольких разделов, причем эти разделы не обязательно должны принадлежать одному физическому устройству. Объединение нескольких разделов в единое логическое устройство может выполняться разными способами и преследовать разные цели, основные из которых: увеличение общего объема логического раздела, повышение производительности и отказоустойчивости. Примерами организации совместной работы нескольких дисковых разделов являются так называемые RAID-массивы, подробнее о которых будет сказано далее.

На разных логических устройствах одного и того же физического диска могут располагаться файловые системы разного типа. Все разделы одного диска имеют одинаковый размер блока, определенный для данного диска в результате низкоуровневого форматирования. Однако в резуль- тате высокоуровневого форматирования в разных разделах одного и того жедиска, представленных разными логическими устройствами, могут быть установлены файловые системы, в которых определены кластеры отличающихся размеров.

Операционная система может поддерживать разные статусы разделов, особым образом отмечая разделы, которые могут быть использованы для загрузки модулей операционной системы, и разделы, в которых можно устанавливать только приложения и хранить файлы данных. Один из разделов диска помечается как загружаемый (или активный). Именно из этого раздела считывается загрузчик операционной системы.

Не нашли то, что искали? Воспользуйтесь поиском:

Читайте также:

  1. DVD. Отличия DVD от обычных CD-ROM
  2. I IV. Регулирование государственных доходов 26 страница
  3. I. Общие требования 2 страница
  4. III. КОНТРОЛЬ ДОСТИЖЕНИЯ ЦЕЛЕЙ КУРСА 1 страница
  5. III. КОНТРОЛЬ ДОСТИЖЕНИЯ ЦЕЛЕЙ КУРСА 2 страница
  6. IV. Безопасные высоты (эшелоны) полета
  7. IV. Предписывающие знаки
  8. Pекомендации по проектированию блокированного дома.
  9. S.M.A.R.T.
  10. V. Подготовим ребенка к школе
  11. XXXVIII 2 страница
  12. А. Требования к крытым спортивным сооружениям

Несколько слов о наглядных сравнениях

Вам, возможно, приходилось читать книги или статьи, в которых для описания взаимодействия головки и диска используется аналогия с "Боингом-747", летящим в нескольких метрах над землей со скоростью 800 км/ч. Правда, сравнение головки с летящим самолетом не совсем корректно. Она ведь никуда не летит, а плавает на воздушной подушке, которая создается на поверхности вращающегося диска.

Правильнее было бы сравнить ее с судном на воздушной подушке. Благодаря специальному профилю головки толщина создающейся воздушной подушки автоматически поддерживается постоянной. Иногда такой способ взаимодействия двух подвижных объектов называют воздушной подвеской.

Пересчитаем теперь все геометрические размеры накопителя в соответствии с масштабом, при котором величина зазора между диском и головкой составит точно 5 мм. Это означает, что все соответствующие числа необходимо умножить на 333333 — именно во столько раз 5 мм больше, чем 15 нм.

Представьте себе эту головку: при таком увеличении ее длина составит около 410 м, ширина — 325 м, а высота — 100 м (это приблизительно размеры небоскреба Sears, положенного на бок). Перемещается она со скоростью 9 187 км/с на расстоянии всего лишь 5 мм над землей (т. е. над диском) и считывает биты данных, промежутки между которыми равны 2,16 см. Эти биты данных расположены на дорожках, расстояние между которыми составляет всего лишь 29,9 см.

Скорость перемещения этой гипотетической головки даже трудно себе представить, поэтому я приведу конкретный пример. Диаметр Земли составляет 12742 км, т. е. длина околоземной орбиты, проходящей на расстоянии одного дюйма от поверхности, будет равна приблизительно 40 000 км. Таким образом, развивая скорость 9 187 км/с, эта головка совершит виток вокруг Земли меньше чем за пять секунд.

Дорожка — это одно "кольцо" данных на одной стороне диска. Дорожка записи на диске слишком велика, чтобы использовать ее в качестве единицы хранения информации. Во многих накопителях ее емкость превышает 100 тыс. байт, и отводить такой блок для хранения небольшого файла крайне расточительно. Поэтому дорожки на диске разбивают на нумерованные отрезки, называемые секторами.

Читайте также:  Как включить виброотклик на samsung

Количество секторов может быть разным в зависимости от плотности дорожек и типа накопителя. Например, дорожка гибких дисков может содержать от 8 до 36 секторов, а дорожка жесткого диска — от 380 до 700. Секторы, создаваемые с помощью стандартных программ форматирования, имеют емкость 512 байт, но не исключено, что в будущем эта величина изменится.

Нумерация секторов на дорожке начинается с единицы, в отличие от головок и цилиндров, отсчет которых ведется с нуля.

При форматировании диска в начале и конце каждого сектора создаются дополнительные области для записи их номеров, а также прочая служебная информация, благодаря которой контроллер идентифицирует начало и конец сектора. Это позволяет отличать неформатированную и форматированную емкости диска. После форматирования емкость диска уменьшается, и с этим приходится мириться, поскольку для обеспечения нормальной работы накопителя некоторое пространство на диске должно быть зарезервировано для служебной информации.

В начале каждого сектора записывается его заголовок (или префикс — prefix portion), по которому определяется начало и номер сектора, а в конце — заключение (или суффикс — suffix portion), в котором находится контрольная сумма (checksum), необходимая для проверки целостности данных. В большинстве новых дисководов вместо заголовка используется так называемая запись No-ID, вмещающая в себя больший объем данных. Помимо указанных областей служебной информации, каждый сектор содержит область данных емкостью 512 байт. При низкоуровневом (физическом) форматировании всем байтам данных присваивается некоторое значение, например F6h.

Утверждать, что размер любого сектора равен 512 байт, не вполне корректно. На самом деле в каждом секторе можно записать 512 байт данных, но область данных — это только часть сектора. Каждый сектор на диске обычно занимает 571 байт, из которых под данные отводится только 512 байт. В различных накопителях пространство, отводимое под заголовки (header) и заключения (trailer), может быть разным, но, как правило, сектор имеет размер 571 байт.

Чтобы очистить секторы, в них зачастую записываются специальные последовательности байтов. Заметим, что, кроме промежутков внутри секторов, существуют промежутки между секторами на каждой дорожке и между самими дорожками. При этом ни в один из указанных промежутков нельзя записать "полезные" данные. Префиксы, суффиксы и промежутки — это как раз то пространство, которое представляет собой разницу между неформатированной и форматированной емкостями диска и "теряется" после его форматирования.

Для ясности.

Для наглядности представьте, что секторы — это страницы в книге. На каждой странице содержится текст, но им заполняется не все пространство страницы, так как у нее есть поля (верхнее, нижнее, правое и левое). На полях помещается служебная информация, например названия глав (в нашей аналогии это будет соответствовать номерам дорожек и цилиндров) и номера страниц (что соответствует номерам секторов). Области на диске, аналогичные полям на странице, создаются во время форматирования диска; тогда же в них записывается и служебная информация. Кроме того, во время форматирования диска области данных каждого сектора заполняются фиктивными значениями. Отформатировав диск, можно записывать информацию в области данных обычным образом. Информация, которая содержится в заголовках и заключениях сектора, не меняется во время обычных операций записи данных. Изменить ее можно, только переформатировав диск.

А теперь перейдем к описанию некоторых областей сектора и дорожки записи. Послеиндексный интервал нужен для того, чтобы при перемещении головки на новую дорожку переходные процессы (установка) закончились до того, как она окажется перед ее первым сектором. В этом случае его можно начать считывать сразу, не дожидаясь, пока диск совершит дополнительный оборот. В некоторых накопителях, работающих с чередованием (interleave) 1:1, упомянутой задержки недостаточно. Дополнительное время можно обеспечить за счет смещения секторов таким образом, чтобы первый сектор дорожки под головкой появлялся с задержкой.

Идентификатор (ID) сектора состоит из полей записи номеров цилиндра, головки и сектора, а также контрольного поля CRC для проверки точности считывания информации ID. В большинстве контроллеров седьмой бит поля номера головки используется для маркировки дефектных секторов в процессе низкоуровневого форматирования или анализа поверхности. Однако такой метод не является стандартным, и в некоторых устройствах дефектные секторы помечаются иначе. Но, как правило, отметка делается в одном из полей ID.

Интервал включения записи следует сразу за байтами CRC; он гарантирует, что информация в следующей области данных будет записана правильно. Кроме того, он служит для завершения анализа CRC (контрольной суммы) идентификатора сектора.

В поле данных можно записать 512 байт информации. За ним располагается еще одно поле CRC для проверки правильности записи данных. В большинстве накопителей размер этого поля составляет два байта, но некоторые контроллеры могут работать и с более длинными полями кодов коррекции ошибок (Error Correction Code — ECC). Записанные в этом поле байты кодов коррекции ошибок позволяют при считывании обнаруживать и исправлять некоторые ошибки. Эффективность этой операции зависит от выбранного метода коррекции и особенностей контроллера. Наличие интервала отключения записи позволяет полностью завершить анализ байтов ECC (CRC).

Интервал между записями необходим для того, чтобы застраховать данные из следующего сектора от случайного стирания при записи в предыдущий сектор. Это может произойти, если при форматировании диск вращался с частотой, несколько меньшей, чем при последующих операциях записи. При этом сектор, естественно, всякий раз будет немного длиннее, и для того, чтобы он не выходил за установленные при форматировании границы, их слегка "растягивают", вводя упомянутый интервал. Его реальный размер зависит от разности частот вращения диска при форматировании дорожки и при каждом обновлении данных.

Предындексный интервал необходим для компенсации неравномерности вращения диска вдоль всей дорожки. Размер этого интервала зависит от возможных значений частоты вращения диска и сигнала синхронизации при форматировании и записи.

Информация, записываемая в заголовке сектора, имеет огромное значение, поскольку содержит данные о номере цилиндра, головки и сектора. Все эти сведения (за исключением поля данных, байтов CRC и интервала отключения записи) записываются на диск только при форматировании низкого уровня.

Дата добавления: 2015-05-09 ; Просмотров: 657 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *