0

Достоинства компьютера в обработке информации

Ответ

1) в компьютере происходят много процессов сразу .

2)в компьютере есть доступ в интернет, в интернете вся нужная информация.

3)во многих моделях компьютера есть много памяти, что позволяет скачивать вам нужные программы, файлы

Обработка является одной из основных операций, выполняемых над информацией, и главным средством увеличения её объёма и разнообразия. Для осуществления обработки информации с помощью технических средств её представляют в формализованном виде — в виде структур данных («информационных объектов»), представляющих собой некоторую абстракцию фрагмента реального мира. Абстракция (от лат. Abstraction — отвлечение) подразумевает выделение наиболее существенных с точки зрения задачи обработки свойств и связей. Так, например, информация о студенте, необходимая для учёта его успеваемости, может быть представлена набором таких идентифицирующих данных, как фамилия, имя, отчество, номер учебной группы. При этом несущественные для данной задачи характеристики, например рост, вес, цвет волос и т.п., не будут учтены.

Обработка информации — получение одних «информационных объектов» (структур данных) из других путём выполнения некоторых алгоритмов.

Исполнитель алгоритма — абстрактная или реальная (техническая, биологическая или биотехническая) система, способная выполнить действия, предписываемые алгоритмом. Для механизации и автоматизации процесса обработки информации и вычислений, выполняемых в соответствии с заданным алгоритмом, используют различные типы вычислительных машин: механические, электрические, электронные (ЭВМ), гидравлические, пневматические, оптические и комбинированные.

В современной информатике основным исполнителем алгоритмов является ЭВМ, называемая также компьютером (от англ. computer — вычислитель).

ЭВМ — электронное устройство, предназначенное для автоматизации процесса алгоритмической обработки информации и вычислений.

В зависимости от формы представления обрабатываемой информации вычислительные машины делятся на три больших класса:

цифровые вычислительные машины (ЦВМ) , обрабатывающие информацию, представленную в цифровой форме;

аналоговые вычислительные машины (АВМ) , обрабатывающие информацию, представ-

ленную в виде непрерывно меняющихся значений какой-либо физической величины (электрического напряжения, тока и т.д.);

гибридные вычислительные машины (ГВМ) , содержащие как аналоговые, так и цифровые вычислительные устройства.

В основе функционирования АВМ заложен принцип моделирования. Так, при использовании

в качестве модели некоторой задачи электронных цепей каждой переменной величине задачи ставится в соответствие определённая переменная величина электронной цепи. При этом основой построения такой модели является изоморфизм (подобие) исследуемой задачи и соответствующей ей электронной модели. Согласно своим вычислительным возможностям АВМ наиболее приспособлены для решения математических задач, содержащих дифференциальные уравнения, не требующие сложной логики. В отличие от ЦВМ, точность которых определяется их разрядностью, точность вычислений на АВМ ограничена и характеризуется качеством изготовления элементной базы и основных узлов. В то же время для целого класса задач скорость решения задач на АВМ может быть значительно больше, чем на ЦВМ. Это объясняется параллельным принципом решения задач на АВМ, ко-

гда результат решения получается мгновенно и одновременно во всех точках модели. Данная особенность обусловливает использование АВМ в замкнутых системах автоматического регулирования и для решения задач в режиме реального времени. Гибридные вычислительные машины, содержащие как аналоговые, так и цифровые вычислительные устройства, совмещают в себе достоинства АВМ и ЦВМ. В таких машинах цифровые устройства обычно служат дли управления и выполнения логических операций, а аналоговые устройства — для решения дифференциальных уравнений.

Поскольку в настоящее время подавляющее большинство компьютеров являются цифровыми, далее слово «компьютер», или «ЭВМ», будем употреблять в значении «цифровой компьютер». Для обработки аналоговой информации на таком компьютере её сначала преобразуют в цифровую форму.

Современный компьютер (ЭВМ) как реальная система обработки данных имеет ряд особен-

ЭВМ располагает конечным множеством команд, лежащих в основе реализации и выполнения каждого алгоритма;

ЭВМ функционирует дискретно (потактно) под управлением программы, хранящейся в оперативной памяти;

ЭВМ имеет широкий набор команд, что позволяет эффективно представлять разнообразные алгоритмы решаемых задач;

каждая ЭВМ является потенциально универсальной. Потенциальность объясняется тем, что ни одна ЭВМ не может считаться универсальной в смысле вычислимости произвольной, частично рекурсивной функции, т.е. для неё существует класс нерешаемых задач при условии неизменности её ресурсов (в первую очередь памяти).

Основу современных компьютеров образует аппаратура (Hardware) — совокупность электронных и электромеханических элементов и устройств, а принцип компьютерной обработки информации состоит в выполнении программы (Software) — формализованном описании алгоритма обработки в виде последовательности команд, управляющих процессом обработки.

Команда представляет собой двоичный код, который определяет действие вычислительной системы по выполнению какой-либо операции.

Операция — комплекс совершаемых технологических действий над информацией по одной из команд программы.

Основными операциями при обработке информации на ЭВМ являются арифметические и логические. Арифметические операции включают в себя все виды математических действий, обусловленных программой, над целыми числами, дробями и числами с плавающей запятой. Логические операции обеспечивают действия над логическими величинами с получением логического результата.

В вычислительных системах последовательность действий, составляющих задачу обработки информации, называют процессом .

Так, обработка некоторого текста программой-редактором является процессом, а редактирование другого текста с помощью этой же программы представляет собой другой процесс, даже если при этом используется одна и та же копия программы. Процесс определяется соответствующей про-

граммой, набором данных, которые в ходе реализации процесса могут считываться, записываться и использоваться, а также дескриптором процесса, который описывает текущее состояние любого выделенного процессу ресурса ЭВМ.

Читайте также:  Во что поиграть сегодня

Дескриптор процесса — совокупность сведений, определяющих состояние ресурсов ЭВМ, предоставленных процессу.

Каждый сеанс пользователя с вычислительной системой, например ввод-вывод данных в ЭВМ, также является процессом. В общем случае в вычислительной системе может одновременно существовать произвольное число процессов, поэтому между ними возможна конкуренция за обладание тем или иным ресурсом, в первую очередь временем процессора — основного вычислительного устройства ЭВМ. Это обусловливает необходимость организации управления процессами и их планирования. В современных ЭВМ для решения данных задач служат операционные системы (ОС), включающие совокупность программ для управления процессами, распределения ресурсов, организации ввода-вывода и интерфейса с пользователем.

С точки зрения организации вычислительных процессов в ЭВМ выделяют несколько режимов:

однопрограммный однопользовательский режим, в котором вычисления носят последовательный характер, а ресурсы ЭВМ не разделяются;

мультизадачный, когда несколько программ последовательно используют время процессора, при этом возможно разделение как аппаратных, так и программных ресурсов ЭВМ;

многопользовательский, когда каждому пользователю выделяется квант (интервал) времени процессора, при этом задача распределения ресурсов, в первую очередь времени процессора и памяти, значительно усложняется;

мультипроцессорный, когда вычислительная система, включающая несколько процессоров, позволяет выполнять реальные параллельные процессы, при этом распределение ресурсов носит наиболее сложный характер.

При выполнении задач обработки информации на компьютере выделяют пакетный и интер-

активный (запросный, диалоговый) режимы взаимодействия пользователя с ЭВМ.

Пакетный режим первоначально использовался для снижения непроизводительных затрат машинного времени путём объединения однотипных заданий. Его суть заключается в следующем. Задания группируются в пакеты, каждый со своим отдельным компилятором. Компилятор загружается один раз, а затем осуществляется последовательная трансляция всех заданий пакета. По окончании компиляции пакета все успешно транслированные в двоичный код задания последовательно загружаются и обрабатываются. Такой режим был основным в эпоху централизованного использования ЭВМ (централизованной обработки), когда различные классы задач решались с использованием одних и тех же вычислительных ресурсов, сосредоточенных в одном месте (информационновычислительном центре). При этом организация вычислительного процесса строилась главным образом без доступа пользователя к ЭВМ. Его функции ограничивались лишь подготовкой исходных данных по комплексу информационно-взаимосвязанных задач и передачей их в центр обработки, где формировался пакет заданий для ЭВМ.

В настоящее время под пакетным режимом также понимается процесс компьютерной обработки заданий без возможности взаимодействия с пользователем. При этом, как правило, задания вводятся пользователями с терминалов и обрабатываются не сразу, а помещаются сначала в очередь

задач, а затем поступают на обработку по мере высвобождения ресурсов. Такой режим реализуется во многих системах коллективного доступа.

Интерактивный режим предусматривает непосредственное взаимодействие пользователя с информационно-вычислительной системой и может носить характер запроса (как правило, регламентированного) или диалога с ЭВМ. Запросный режим позволяет дифференцированно, в строго установленном порядке предоставлять пользователям время для общения с ЭВМ. Диалоговый режим открывает пользователю возможность непосредственно взаимодействовать с вычислительной системой в допустимом для него темпе работы, реализуя повторяющийся цикл выдачи задания, получения и анализа ответа. При этом ЭВМ сама может инициировать диалог, сообщая пользователю последовательность шагов (предоставление меню) для получения искомого результата. Взаимодействие пользователя и ЭВМ осуществляется путём передачи сообщений и управляющих сигналов между пользователем и ЭВМ. Входные сообщения генерируются оператором с помощью средств ввода: клавиатуры, манипуляторов типа мышь и т.п., выходные — компьютером в виде текстов, звуковых сигналов, изображений и представляются пользователю на экране монитора или других устройствах вывода информации. Основными типами сообщений, генерируемыми пользователем, являются: запрос информации, запрос помощи, запрос операции или функции, ввод или изменение информации и т.д. В ответ со стороны компьютера он получает: подсказки или справки, информационные сообщения, не требующие ответа, приказы, требующие действий, сообщения об ошибках, нуждающиеся в ответных действиях и т.д.

Данный режим является основным на современном этапе развития компьютерных систем обработки информации, характерной чертой которого является широкое внедрение практически во все сферы деятельности человека персональных компьютеров (ПК) — однопользовательских микроЭВМ, удовлетворяющих требованиям общедоступности и универсальности применения. В настоящее время пользователь, обладая знаниями основ информатики и вычислительной техники, сам разрабатывает алгоритм решения задачи, вводит данные, получает результаты, оценивает их качество. У него имеются реальные возможности решать задачи с альтернативными вариантами, анализировать и выбирать с помощью системы в конкретных условиях наиболее приемлемый вариант.

Основные этапы решения задач с помощью компьютера:

1. Постановка задачи:

сбор информации о задаче;

формулировка условия задачи;

определение конечных целей решения задачи;

определение формы выдачи результатов;

описание данных (их типов, диапазонов величин, структуры и т.п.).

2. Анализ и исследование задачи, модели:

анализ существующих аналогов;

анализ технических и программных средств;

разработка математической модели;

разработка структур данных.

3. Разработка алгоритма:

выбор метода проектирования алгоритма;

выбор формы записи алгоритма (блок-схема, псевдокод и др.);

Любой компьютер может быть рассмотрен с технической точки зрения как система взаимосвязанных материальных объектов (устройств) разного принципа действия. Все эти устройства объединяет общая цель — техническое обеспечение основных этапов обработки информации.

Одни устройства служат для того, чтобы компьютер смог получать информацию, другие преобразуют введенную в компьютер информацию, третьи обеспечивают вывод информации из компьютера, а некоторые несут вспомогательные функции. Техническую часть персонального компьютера принято называть аппаратным обеспечением. Аппаратное обеспечение всегда может быть представлено в виде базовой части, составляющей основу любой модели компьютера, и периферийной части, которую составляют разнообразные устройства ввода-вывода.

Читайте также:  Беспроводные наушники фото людей

Из раздела вы узнаете, из каких устройств состоит базовая часть компьютера, познакомитесь с различными видами внутренней и внешней памяти, их назначением, физическими принципами и характеристиками. Приводится краткая характеристика периферийных устройств — устройств ввода (клавиатуры, манипуляторов, сенсорных и сканирующих устройств, систем распознавания символов) и вывода (мониторов, принтеров, плоттеров). Вы познакомитесь с упрощенной структурой компьютера и основными принципами взаимодействия его частей. Лучшего понимания вы достигнете, если хорошо освоите тему, посвященную алгебре логики, которая заложена в основу организации работы базовой части компьютера.

В разделе также рассматриваются компьютерные сети, для функционирования которых тоже необходимо специальное аппаратное обеспечение. Вы получите представление о каналах связи, о назначении сетевых адаптеров и модемов, о роли протоколов.

Последние темы раздела посвящены описанию основных классов современных компьютеров. Один класс образуют большие компьютеры, к которым отнесены суперкомпьютеры и суперсерверы. Другой класс составляют малые компьютеры: персональные, портативные и производственные. Для каждого подкласса приводятся основные характеристики и особенности.

И в заключение, вы узнаете историю основных этапов развития компьютерной техники — от идеи создания аналитической машины до перспективных моделей «компьютера будущего».

Компьютер как средство обработки информации

Изучив эту тему, вы узнаете:

– каково назначение аппаратного обеспечения компьютера;
– каков состав базового комплекта компьютера;
– что означает понятие производительности компьютера.

Перед вами на столе установлен компьютер. Вы можете обратиться к нему за помощью, пообщаться с ним — иногда как с добрым или строгим учителем, иногда как с партнером в игре. Компьютер помогает вам в решении самых разных задач, учит, развлекает. При этом компьютер послушно выполняет ваши указания в виде определенных команд. Компьютер обладает чрезвычайно высокой по сравнению с человеческими возможностями скоростью работы, благодаря чему команды исполняются почти мгновенно.

Что же позволяет компьютеру так безукоризненно исполнять волю человека? Как устроен компьютер и из каких частей он состоит? Ответы на эти вопросы могут быть простыми или сложными в зависимости от того, как человек собирается его использовать.

В этом учебнике вы познакомитесь с устройством компьютера с точки зрения пользователей, чтобы уметь обращаться с компьютером как с инструментом для обработки информации. Компьютер должен воспринимать и распознавать вводимую информацию, запоминать ее, совершать над ней различные действия и выводить результаты своей работы, то есть выполнять основные этапы обработки информации (рисунок 16.1): ввод, хранение, преобразование, вывод.

Рис. 16.1. Основные этапы обработки информации

Для решения всех этих задач необходимы технические устройства и программы. Совокупность технических устройств называют аппаратным обеспечением (англ. hardware — аппаратные средства).

Аппаратное обеспечение персонального компьютера — система взаимосвязанных технических устройств, выполняющих ввод, хранение, обработку и вывод информации.

Отдельные части компьютера — блоки, связанные между собой с помощью различных устройств: электрических кабелей, разъемов, портов и т. п.

Из всего многообразия составных частей компьютера можно выделить минимально необходимый базовый комплект: устройство ввода информации — клавиатура, устройство вывода — монитор и отдельный блок, который называют системным. Эти устройства обеспечивают основные этапы обработки информации, отображенные на рисунке 16.1. С помощью клавиатуры человек вручную вводит информацию (данные и команды) в память компьютера. Монитор используется для отображения вводимых данных, а также для вывода на экран результатов обработки информации. Системный блок обеспечивает преобразование и хранение информации.

Наряду с клавиатурой и монитором при работе с персональным компьютером используется еще ряд устройств, не входящих в базовый комплект, но обеспечивающих ввод и вывод информации. Трудно, например, представить себе работу современного компью тера без маленькой помощницы — мыши, которая легко движется по коврику даже в руках неопытного пользователя.

Очень полезно иметь печатающее устройство — принтеру позволяющий распечатывать в считанные минуты текстовые, табличные, графические документы. Часто в комплект современного компьютера входят также сканер (устройство ввода информации с листа книги, журнала и т. п.), звуковые колонки, наушники, микрофон и др. Те, кто увлекается компьютерными играми, знают, что для управления ими часто используется джойстик.

Наличие этих и многих других устройств в составе компьютера позволяет использовать его в качестве универсального инструмента обработки разнообразной информации. В последующих темах вы более подробно познакомитесь с назначением и особенностями аппаратного обеспечения персонального компьютера.

Независимо от комплектации компьютера нас всегда будут интересовать характеристики его возможностей, которые также позволяют сравнивать компьютеры между собой. Одна из таких важнейших характеристик — производительность компьютера, которая приближенно характеризуется количеством элементарных операций, выполняемых за одну секунду (оп/с).

Производительность компьютера — характеристика, показывающая скорость выполнения компьютером операций обработки информации.

Контрольные вопросы

1. Как вы понимаете назначение компьютера?

2. Назовите основные этапы обработки информации компьютером.

3. Опишите основные этапы обработки информации с помощью обычного микрокалькулятора.

4. Что понимают под аппаратным обеспечением компьютера?

5. Что входит в базовый комплект персонального компьютера?

6. Каково назначение клавиатуры и монитора?

7. Перечислите известные вам устройства компьютера, не входящие в базовый комплект.

8. Что понимается под производительностью компьютера?

Микропроцессор

Изучив эту тему, вы узнаете:

Читайте также:  Герои меча и магии маги

– что такое микропроцессор и каково его назначение;
– каковы основные характеристики микропроцессора — тактовая частота и разрядность.

Центральным устройством в компьютере является процессор. Он выполняет различные арифметические и логические операции, к которым сводится решение любой задачи обработки информации на компьютере. Кроме того, процессор управляет работой всех устройств компьютера.

Процессор — устройство, обеспечивающее преобразование информации и управление другими устройствами компьютера.

Что же представляет собой современный процессор? Для ответа на этот вопрос вспомним, что вся история развития компьютеров тесно связана с достижениями человечества в области электроники, материаловедения и других областей науки и техники. Именно открытия некоторых свойств материалов и веществ, в частности на основе кремния, позволили создать процессор для современного компьютера на кремниевом кристалле. Современный процессор представляет собой микросхему, или чип (англ. chip — чип), выполненную на миниатюрной кремниевой пластине — кристалле. Поэтому его принято называть микропроцессором (англ. Central Processing Unit, CPU).

Первый в мире микропроцессор создан в 1971 году инженерами фирмы Intel. Для современных компьютеров микропроцессоры фирмы Intel и фирмы AMD являются наиболее распространенными.

Микропроцессор конструктивно представляет собой интегральную микросхему, а точнее, сверхбольшую интегральную схему (СБИС). Слово «сверхбольшая» относится не к размерам интегральной схемы, а к количеству заключенных в ней электронных компонентов, размещенных на кремниевой пластине. Число таких компонентов достигает нескольких миллионов. Совершенствование технологий позволяет минимизировать электронные компоненты и увеличить их количество на одном кристалле, что влечет за собой уменьшение размеров устройств, повышение скорости работы и увеличение надежности. Микропроцессор имеет контакты в виде штырьков, которые вставляются в специальный разъем, или сокет (англ. socket — разъем), на системной плате. Разъем имеет форму прямоугольника с несколькими рядами отверстий по периметру.

Обработка любой информации на компьютере связана с выполнением процессором различных арифметических и логических операций. Арифметические операции — это базовые математические операции, такие как сложение, вычитание, умножение и деление. Логические операции (логическое сложение, логическое умножение, отрицание и др.) представляют собой некоторые специальные операции, которые чаще всего используются при проверке соотношений между различными величинами. Это необходимо для управления работой компьютера.

В состав процессора входят:
– арифметико-логическое устройство (АЛУ), выполняющее базовые арифметические и логические операции;
– устройство управления (УУ);
– элементы памяти.

Процессор должен обеспечить автоматическое исполнение программы, хранящейся в памяти компьютера, для чего выполняет следующие действия:
– извлечь из памяти команду;
– расшифровать команду;
– выполнить команду.

Эти действия процессор повторяет до команды окончания программы. Важной характеристикой процессора является его производительность (количество элементарных операций, выполняемых им за одну секунду), которая и определяет быстродействие компьютера в целом. В свою очередь, производительность процессора зависит от двух других его характеристик — тактовой частоты и разрядности.

Тактовая частота задает ритм жизни компьютера. Тактовая частота — это количество тактов в секунду. Такт — интервал времени между началами двух соседних тактовых импульсов. Единица измерения тактовой частоты — герц (Гц). Для современных компьютеров тактовая частота измеряется единицами гигагерц (ГГц), 1 ГГц = 109 Гц. Чем выше тактовая частота, тем меньше длительность выполнения операций и тем выше производительность компьютера. Тактовая частота определяет число тактов работы процессора в секунду. В течение одного такта может быть выполнена элементарная операция, например сложение двух чисел. Современный персональный компьютер может выполнять миллионы и миллиарды таких элементарных операций в секунду.

Разрядность процессора определяет размер минимальной порции информации, обрабатываемой процессором за один такт. Эта порция информации, часто называемая машинным словом, представлена последовательностью двоичных разрядов (бит). Процессор в зависимости от его типа может иметь одновременный доступ к 8, 16, 32, 64 битам.

С повышением разрядности увеличивается объем информации, обрабатываемой процессором за один такт, что ведет к уменьшению количества тактов работы, необходимых для выполнения сложных операций. Кроме того, чем выше разрядность, тем с большим объемом памяти может работать процессор. Первые микропроцессоры (1971 г. — фирма Intel) имели разрядность 4 бит, тактовую частоту 108 кГц и способность адресовать 640 байт основной памяти. В 2000 году компьютеры оснащались 32-разрядными микропроцессорами с тактовой частотой порядка 1,7-3 ГГц.

Кроме центрального микропроцессора во многих компьютерах имеются сопроцессоры — дополнительные специализированные процессоры. Например, математический сопроцессор — микросхема, которая помогает основному процессору в выполнении вычислений при решении на компьютере математических задач.

Одной из основных тенденций в развитии микропроцессоров до недавнего времени было увеличение тактовой частоты и разрядности. Сегодня ведущие производители микропроцессоров отказались от такой стратегии, теперь важнейшими показателями производительности становятся количество процессорных ядер, которые реализуют полный набор возможностей процессора.

Контрольные вопросы

1. Как вы понимаете назначение микропроцессора?

2. Что такое микропроцессор?

3. Какие характеристики микропроцессора вы знаете?

4. Что такое тактовая частота процессора и как она связана с характеристикой «производительность» ?

5. Что такое разрядность процессора?

6. Что зависит от разрядности процессора?

7. В чем назначение сопроцессора?

8. Приведите примеры устройств, использующих микропроцессор.

9. Определите тип микропроцессора в школьном (личном) компьютере.

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *