0

Вычитающий счетчик на d триггерах

На базе счетных триггеров можно построить цифровое устройство, получившее название электронного счетчика. Электронные счетчики (далее, просто счетчики) позволяют вести подсчет электрических импульсов, количество которых

(поступивших на вход счетчика) представляется, обычно, в параллельном коде.

Счетчики могут отличаться модулем счета и типом счетной последовательности, которая, в частности, может быть двоичной, двоично-десятичной, в коде Грея и т.п. Цифровые последовательностные устройства, выполненные по схеме счетчика, но

имеющие один счетный вход и один выход называются делителями частоты.

Рис. 4.45. Условное обозначение реверсивного регистра сдвига

Таким образом, любой счетчик может служить в качестве делителя частоты, если используется информация только одного из его выходов. Счетчики и делители имеют одинаковую структуру.

Счетчики и делители подразделяются на асинхронные и синхронные. У синхронных счетчиков все разрядные триггеры синхронизируются параллельно одними и теми же синхроимпульсами, поступающими из источника этих импульсов. Асинхронные счетчики имеют последовательную синхронизацию, т.е. каждый последующий разрядный триггер синхронизируется выходными импульсами триггера предыдущего разряда. Асинхронные счетчики иногда называют последовательнымиили счетчиками домино, а синхронные счетчики – параллельными.

Синхронные счетчики, в свою очередь, подразделяются на параллельно-синхронные и последовательно-синхронные. Параллельные счетчики имеют более высокую скорость счета, чем асинхронные к тому же у них отсутствует эффект «гонок».

Счетчики, независимо от способа синхронизации, подразделяются на счетчики прямого счета (суммирующие) и на счетчики обратного счета (вычитающие). В интегральном исполнении выпускаются также реверсивные счетчики, в которых имеется специальный вход для переключения режима работы, т.е. направления счета. Многие типы счетчиков, выпускаемые промышленностью в интегральном исполнении, имеют дополнительные входы предустановки, позволяющие использовать эти счетчики в режиме регистра памяти.

В качестве разрядных триггеров счетчиков и делителей могут быть использованы двухступенчатые D-триггеры, Т- и JK-триггеры.

Счетчики относятся к последовательностным устройствам с циклически повторяющейся последовательностью состояний. Число, соответствующее количеству импульсов (поступивших на вход счетчика), при котором счетчик “возвращается” в исходное состояние, называется модулемили коэффициентом счета. Модуль счета, обычно, обозначают буквой М(или Ксч). Например, максимальный модуль счета счетчика из двух триггеров равен М = 2 2 = 4, трех триггеров – М = 2 3 = 8 и т.д. В общем случае для n – разрядного счетчика – М = 2 n . Модуль счета счетчика численно совпадает с модулем деления делителя частоты. Счетчик по модулю 8 позволяет реализовать (без дополнительных схемных затрат) делитель частоты на 8. Это значит, что данный делитель делит частоту входной импульсной последовательности на 8.

Асинхронный двоичный счетчик. Асинхронный двоичный счетчик представляет собой совокупность последовательно соединенных триггеров (D – или JK), каждый из которых ассоциируется с битом в двоичном представлении числа. Если в счетчикеm триггеров, то число возможных состояний счетчика равно 2 m , и, следовательно, модуль счета М также равен 2 m . Счетная последовательность в двоичном суммирующем счетчике начинается с нуля и доходит до максимального числа 2 m – 1, после чего снова проходит через нуль и повторяется. В вычитающем двоичном счетчике последовательные двоичные числа перебираются в обратном порядке, и при повторении последовательности максимальное число следует за нулем.

Рассмотрим устройство двоичного суммирующего счетчика по модулю М=16, выполненного на базе JK-триггеров (рис. 4.46).

Рис. 4.46. Асинхронный суммирующий двоичный счетчик

Как видно из рис. 4.46, синхронизирующие входы всех триггеров, кроме крайнего левого, соединены с выходами предыдущих триггеров. Поэтому состояние триггера меняется в ответ на изменение состояния предыдущего триггера. Временная диаграмма работы этого счетчика при подаче на его вход логического сигнала в виде периодической последовательности «0» и «1» представлена на рис. 4.47.

Рис. 4.47. Временные диаграммы работы асинхронного двоичного счетчика.

Из рис. 4.47 легко заметить, что значение разряда в выбранной позиции меняется тогда, когда сигнал Ст переходит из “1” в “0”, управление триггерами осуществляется срезом синхроимпульсов (отрицательным перепадом напряжения импульса синхронизации). При поступлении лог. «0» на вход сброса все разряды счетчика также устанавливаются в «0» не зависимо от состояния входа Ст. Это устройство имеет, также, возможность предварительной установки по входам D0…D3. Причем перед подачей сигналов записи на D0…D3 все разряды счетчика должны быть сброшены в «0». Возможна реализация такого счетчика и на D – триггерах (при включении Т – триггером), при этом счетчик меняет свое состояние по фронту сигнала Ст.

Счетчики обратного счета(вычитающие счетчики). На рис. 4.48 приведена схема асинхронного четырехразрядного двоичного вычитающего счетчика, построенного на базе D-триггеров.

Рис. 4.48. Асинхронный вычитающий двоичный счетчик

Отметим, что условия для изменения состояний триггеров вычитающих счетчиков аналогичны условиям для суммирующих счетчиков с той лишь разницей, что они должны “опираться” на значения инверсных, а не прямых выходов триггеров. Следовательно, рассмотренный выше счетчик можно превратить в вычитающий, просто переключив входы “С” триггеров с выходов Q на выходы . Когда в качестве разрядных триггеров используются D-триггеры, синхронизируемые фронтом синхросигнала, для получения вычитающего счетчика (асинхронного) входы “С” последующих триггеров соединяются с прямыми выходами предыдущих, также как в счетчике прямого счета, построенного на JK-триггерах.

Рис. 4.49. Временные диаграммы работы вычитающего счетчика

Работа вычитающего счетчика на D-триггерах иллюстрирована на рис. 4.49. Из рис. 4.49 следует, что после нулевого состояния всех триггеров, с приходом первого синхроимпульса они устанавливаются в состояние “1”. Поступление второго синхроимпульса приводит к уменьшению этого числа на одну единицу и т.д. После поступления шестнадцатого импульса, снова все триггеры обнуляются, и цикл счета повторяется, что соответствует модулю М=16.

В некоторых случаях необходимо, чтобы счетчик мог работать как в прямом, так и в обратном направлении счета. Такие счетчики называются реверсивными. Реверсивные счетчики могут быть как асинхронного, так и синхронного типа. Они строятся путем применения логических коммутаторов (мультиплексоров) в цепях связи между триггерами. Так, например, асинхронный реверсивный двоичный счетчик можно построить, если обеспечить подачу сигналов с прямого (при суммировании) или с инверсного (при вычитании) выхода предыдущего JK– или T-триггера на счетный вход последующего. В случае, когда реверсивный счетчик строится на базе D-триггеров, управляемых передним фронтом, для получения режима прямого счета следует соединить инверсный выход предыдущего со счетным входом последующего триггера.

Все рассмотренные типы счетчиков могут быть использованы в цифровых устройствах, где различная задержка установки разрядов не играет значения. Подключение к выходам таких счетчиков последовательностных устройств может приводить в некоторых случаях к сбоям последних вследствие проявления эффекта «гонок». Поэтому были разработаны синхронные счетчики.

Читайте также:  Игровые ноутбуки с лучшей системой охлаждения

Параллельные счетчики (синхронные счетчики). Как было уже сказано выше, параллельные счетчики бывают двух типов: синхронные параллельные исинхронныепоследовательные.

Последовательный синхронный счетчик. По способу подачи синхроимпульсов такие счетчики параллельные, т.е. синхроимпульсы поступают на все триггеры счетчика параллельно, а по способу управления (подачи управляющих импульсов) – последовательные. Схема последовательного синхронного счетчика, реализованного на JK-триггерах, приведена на рис. 4.50.

Рис. 4.50. Последовательный синхронный суммирующий счетчик на JK- триггерах

Последовательный синхронный счетчик обладает повышенным быстродействием, однако, за счет последовательного формирования управляющих уровней, на входы “J” и “К” счетных триггеров, быстродействие несколько уменьшается. От этого недостатка лишены параллельные синхронные счетчики, в которых формирование управляющих уровней и их подача на соответствующие входы триггеров счетчика осуществляется одновременно, т.е. параллельно. Пример реализации параллельного синхронного счетчика иллюстрирован рис. 4.51.

Отличие от предыдущего заключается в том, что перенос в следующий разряд формируется не последовательно включенными двухвходовыми элементами И, а для

каждого разряда служит свой элемент, на входы которого поданы сигналы с предыдущих разрядов. Причем число входов элемента увеличивается с увеличением старшинства и числа разрядов. Поскольку триггеры меняют свое состояние синхронно, сигналы на всех входах схем переноса появляются одновременно и эффект гонок

отсутствует. Счетчики с параллельным переносом по-сравнению с предыдущими имеют более высокое быстродействие.

Рис. 4.51. Синхронный параллельный суммирующий счетчик

Счетчики с произвольным коэффициентом счета. Принцип построения подобного класса счетных устройств состоит в исключении нескольких состояний обычного двоичного счетчика, являющихся избыточными для счетчиков с коэффициентом пересчета, отличающимися от двоичных. При этом избыточные состояния исключаются с помощью обратных связей внутри счетчика.

Число избыточных состояний для любого счетчика определяется из следующего выражения:

где М – число запрещенных состояний,

Ксч – требуемый коэффициент счета;

2 m – число устойчивых состояний двоичного счетчика.

Задача синтеза счетчика с произвольным коэффициентом счета заключается в определении необходимых обратных связей и минимизации их числа. Требуемое количество триггеров определяется из выражения:

где [log2 Ксч] – двоичный логарифм заданного коэффициента пересчета Ксч, округленный до ближайшего целого числа.

В каждом отдельном случае приходится применять какие-то конкретные методы получения требуемого коэффициента пересчета. Существует несколько методов получения счетчиков с заданным коэффициентом пересчета Ксч. Один их этих методов заключается в немедленном сбросе в “0” счетчика, установившегося в комбинацию, соответствующему числу Ксч. Его называют также методом автосброса. Рассмотрим пример реализации счетчика с Ксч=10 методом автосброса. Очевидно, что “сбрасывая” двоичный четырехразрядный счетчик на нуль каждый раз, когда он будет принимать состояние 1010, можно обеспечить «возврат” счетчика в исходное состояние после каждых десяти импульсов. Подобный прием удобно применять при использовании счетчиков в интегральном исполнении, имеющих встроенные элементы И на входах установки в нуль, как это сделано в микросхеме К1533ИЕ5. В данном примере

(рис. 4.52) соединения обеспечивают коэффициент пересчета Ксч =10.

Рис.4.52. Пример реализации счетчика с произвольным коэффициентом пересчета, отличным от

Как следует из рис. 4.52, роль ячейки, выявляющей факт достижения кодовой комбинации 1010 на выходах счетчика, играет ячейка И, уже имеющаяся в микросхеме К1533ИЕ5.

В таблице 4.11 поясняются конфигурации соединений для получения различных коэффициентов пересчета с помощью счетчика К1533ИЕ5. Наиболее очевидные варианты получения коэффициентов (2, 4, 8, 16) в таблице не указаны. В графе “Соединения” таблицы указано, какие выводы микросхемы должны быть соединены между собой: например, указание 1-12 означает, что нужно соединить вывод 1 с выводом 12. В строках “Ввод” и “Выход” таблицы указаны номера выводов микросхемы, на которые следует подавать входные импульсы и с которых надлежит снимать выходные, соответственно. Следует отметить, что К1533ИЕ5 состоит из четырех счетных триггеров, один из которых имеет раздельные выводы входа и выхода, а остальные три триггера соединены последовательно по схеме асинхронного счетчика, поэтому здесь возможно проявление эффекта «гонок» для некоторых коэффициентов пересчета, что требует усложнения схемы автосброса.

Счетчики с переменным коэффициентом счета имеют очень широкое применение в радиотехнике при реализации делителей частоты с переменным коэффициентом деления, при реализации различных программируемых таймеров. В основном при реализации таких устройств используются синхронные параллельные счетчики с синхронными схемами предустановки (сброса).

Не нашли то, что искали? Воспользуйтесь поиском:

Счётчики используются для построения схем таймеров или для выборки инструкций из ПЗУ в микропроцессорах. Они могут использоваться как делители частоты в управляемых генераторах частоты (синтезаторах). При использовании в цепи ФАП счётчики могут быть использованы для умножения частоты как в синтезаторах, так и в микропроцессорах.

Вниманию любителей баннерорезок. Данная статья полностью искажается любыми антирекламными программами. Они очень не любят слово "счетчик", поэтому почти все рисунки вырезаются, насколько искажается текст не вчитывался 🙂

Двоичные асинхронные счётчики

Простейший вид счётчика — двоичный может быть построен на основе T-триггера. T-триггер изменяет своё состояние на прямо противоположное при поступлении на его вход синхронизации импульсов. Для реализации T-триггера воспользуемся универсальным D-триггером с обратной связью, как это показано на рисунке 1.


Рисунок 1. Реализация счетного T-триггера на универсальном D-триггере

Так как схема T-триггера при поступлении на вход импульсов меняет свое состояние на противоположное, то её можно рассматривать как счётчик, считающий до двух. Временные диаграммы сигналов на входе и выходах T-триггера приведены на рисунке 2.


Рисунок 2 Временные диаграммы сигналов на входе и выходах T-триггера

Обычно требуется посчитать большее количество импульсов. В этом случае можно использовать выходной сигнал первого счетного триггера как входной сигнал для следующего триггера, то есть соединить триггеры последовательно. Так можно построить любой счётчик, считающий до максимального числа, кратного степени два. Такой счетчик называется двоичным счетчиком, а тот факт, что состояние триггеров меняется на противоположное в различные моменты времени по мере распространения цифрового сигнала, отображается термином: асинхронный двоичный счетчик.

Схема счётчика, позволяющего посчитать любое количество импульсов, меньшее шестнадцати, приведена на рисунке 3. Количество поступивших на вход импульсов можно узнать, подключившись к выходам счётчика . Это число будет представлено в двоичном коде.


Рисунок 3. Схема четырёхразрядного счётчика, построенного на универсальных D-триггерах

Для того чтобы разобраться, как работает схема двоичного счётчика, воспользуемся временными диаграммами сигналов на входе и выходах этой схемы, приведёнными на рисунке 4.

Читайте также:  Видеокарта msi radeon rx 580 8gb


Рисунок 4 Временная диаграмма четырёхразрядного счётчика

Пусть первоначальное состояние всех триггеров счётчика будет нулевым. Это состояние мы видим на временных диаграммах. Запишем его в таблицу 1. После поступления на вход счётчика тактового импульса (который воспринимается по заднему фронту) первый триггер изменяет своё состояние на противоположное, то есть единицу.

Запишем новое состояние выходов счётчика в ту же самую таблицу. Так как по приходу первого импульса изменилось состояние первого триггера, то этот триггер содержит младший разряд двоичного числа (единицы). В таблице поместим его значение на самом правом месте, как это принято при записи любых многоразрядных чисел. Здесь мы впервые сталкиваемся с противоречием правил записи чисел и правил распространения сигналов на принципиальных схемах.

Подадим на вход счётчика ещё один тактовый импульс. Значение первого триггера снова изменится на прямо противоположное. На этот раз на выходе первого триггера, а значит и на входе второго триггера сформируется задний фронт. Это означает, что второй триггер тоже изменит своё состояние на противоположное. Это отчётливо видно на временных диаграммах, приведённых на рисунке 4. Запишем новое состояние выходов счётчика в таблицу 1. В этой строке таблицы образовалось двоичное число 2. Оно совпадает с номером входного импульса.

Продолжая анализировать временную диаграмму, можно определить, что на выходах приведённой схемы счётчика последовательно появляются цифры от 0 до 15. Эти цифры записаны в двоичном виде. При поступлении на счётный вход счётчика очередного импульса, содержимое его триггеров увеличивается на 1. Поэтому такие счётчики получили название суммирующих двоичных счётчиков.

Таблица 1. Изменение уровней на выходе суммирующего счётчика при поступлении на его вход импульсов.

номер входного импульса Q3 Q2 Q1 Q0
1 1
2 1
3 1 1
4 1
5 1 1
6 1 1
7 1 1 1
8 1
9 1 1
10 1 1
11 1 1 1
12 1 1
13 1 1 1
14 1 1 1
15 1 1 1 1

Условно-графическое обозначение суммирующего двоичного счетчика на принципиальных схемах приведено на рисунке 5. В двоичных счётчиках обычно предусматривают вход обнуления микросхемы R, который позволяет записать во все триггеры счётчика нулевое значение. Это состояние иногда называют исходным состоянием счётчика.


Рисунок 5. Четырёхразрядный двоичный счётчик

Существуют готовые микросхемы асинхронных двоичных счётчиков. Классическим примером такого счётчика является микросхема 555ИЕ5. Подобные схемы существуют и внутри САПР программируемых логических интегральных схем.

Двоичные вычитающие асинхронные счётчики

Счётчики могут не только увеличивать своё значение на единицу при поступлении на счётный вход импульсов, но и уменьшать его. Такие счётчики получили название вычитающих счётчиков. Для реализации вычитающего счётчика достаточно чтобы T-триггер изменял своё состояние по переднему фронту входного сигнала.

Изменить рабочий фронт входного сигнала можно инвертированием этого сигнала. В схеме, приведенной на рисунке 6, для реализации вычитающего счётчика сигнал на входы последующих триггеров подаются с инверсных выходов предыдущих триггеров.


Рисунок 6 Схема четырёхразрядного двоичного вычитающего счётчика, построенного на универсальных D-триггерах

Временная диаграмма этого счётчика приведена на рисунке 7. По этой диаграмме видно, что при поступлении на вход счётчика первого же импульса на выходах появляется максимально возможное для четырёхразрядного счётчика число 1510. При поступлении следующих импульсов содержимое счётчика уменьшается на единицу.


Рисунок 7. Временная диаграмма четырёхразрядного вычитающего счётчика

Это вызвано тем, что при поступлении переднего фронта тактового импульса первый триггер переходит в единичное состояние. В результате на его выходе тоже формируется передний фронт. Он поступает на вход второго триггера, что приводит к записи единицы и в этот триггер. Точно такая же ситуация складывается со всеми триггерами счётчика, то есть все триггеры перейдут в единичное состояние. Для четырёхразрядного счётчика это и будет число 1510. Запишем новое состояние вычитающего счётчика в таблицу 2.

Следующий тактовый импульс приведёт к изменению состояния только первого триггера, так как при этом на его выходе сформируется задний фронт сигнала. Запишем и это состояние в таблицу 2. Обратите внимание, что при поступлении каждого последующего импульса содержимое счётчика, построенного по анализируемой схеме, уменьшается на единицу. Этот процесс продолжается до тех пор, пока состояние счётчика не станет вновь равно 0. При поступлении новых тактовых импульсов процесс повторяется снова.

Все возможные состояния логических сигналов на выходах вычитающего счётчика, при поступлении на счётный вход схемы тактовых импульсов приведены в таблице 2. Таблица 2 фактически повторяет временные диаграммы, приведённые на рисунке 7, однако она более наглядно представляет физику работы счётчика. Просто мы при работе с числами привыкли иметь дело с цифрами, а не с напряжениями, тем более в зависимости от времени.

Таблица 2. Изменение уровней на выходе вычитающего счётчика при поступлении на его вход импульсов.

номер входного импульса Q3 Q2 Q1 Q0
1 1 1 1 1
2 1 1 1
3 1 1 1
4 1 1
5 1 1 1
6 1 1
7 1 1
8 1
9 1 1 1
10 1 1
11 1 1
12 1
13 1 1
14 1
15 1

Для тех, кто привык работать с реально выпускаемыми микросхемами средней интеграции, следует обратить внимание, что для примера были использованы D-триггеры, работающие по заднему фронту. Микросхемы, выпускаемые промышленностью, например, 1533ТМ2 (два D-триггера в одном корпусе) или SN74LVC1G79 (микросхемы малой логики) срабатывают по переднему фронту, поэтому схемы для суммирующего и вычитающего счётчика поменяются местами.

Следует отметить, что при применении для реализации двоичных счетчиков современных схем большой интеграции, таких как программируемые пользователем вентильные матрицы FPGA, мы можем применять D-триггеры срабатывающие как по переднему (нарастающему), так и по заднему (спадающему фронту).

Вместе со статьей "Асинхронные счётчики" читают:

Счётчики используются для построения схем таймеров или для выборки инструкций из ПЗУ в микропроцессорах. Они могут использоваться как делители частоты в управляемых генераторах частоты (синтезаторах). При использовании в цепи ФАП счётчики могут быть использованы для умножения частоты как в синтезаторах, так и в микропроцессорах.

Вниманию любителей баннерорезок. Данная статья полностью искажается любыми антирекламными программами. Они очень не любят слово "счетчик", поэтому почти все рисунки вырезаются, насколько искажается текст не вчитывался 🙂

Двоичные асинхронные счётчики

Простейший вид счётчика — двоичный может быть построен на основе T-триггера. T-триггер изменяет своё состояние на прямо противоположное при поступлении на его вход синхронизации импульсов. Для реализации T-триггера воспользуемся универсальным D-триггером с обратной связью, как это показано на рисунке 1.


Рисунок 1. Реализация счетного T-триггера на универсальном D-триггере

Так как схема T-триггера при поступлении на вход импульсов меняет свое состояние на противоположное, то её можно рассматривать как счётчик, считающий до двух. Временные диаграммы сигналов на входе и выходах T-триггера приведены на рисунке 2.


Рисунок 2 Временные диаграммы сигналов на входе и выходах T-триггера

Читайте также:  Графические пароли на телефон легкие

Обычно требуется посчитать большее количество импульсов. В этом случае можно использовать выходной сигнал первого счетного триггера как входной сигнал для следующего триггера, то есть соединить триггеры последовательно. Так можно построить любой счётчик, считающий до максимального числа, кратного степени два. Такой счетчик называется двоичным счетчиком, а тот факт, что состояние триггеров меняется на противоположное в различные моменты времени по мере распространения цифрового сигнала, отображается термином: асинхронный двоичный счетчик.

Схема счётчика, позволяющего посчитать любое количество импульсов, меньшее шестнадцати, приведена на рисунке 3. Количество поступивших на вход импульсов можно узнать, подключившись к выходам счётчика . Это число будет представлено в двоичном коде.


Рисунок 3. Схема четырёхразрядного счётчика, построенного на универсальных D-триггерах

Для того чтобы разобраться, как работает схема двоичного счётчика, воспользуемся временными диаграммами сигналов на входе и выходах этой схемы, приведёнными на рисунке 4.


Рисунок 4 Временная диаграмма четырёхразрядного счётчика

Пусть первоначальное состояние всех триггеров счётчика будет нулевым. Это состояние мы видим на временных диаграммах. Запишем его в таблицу 1. После поступления на вход счётчика тактового импульса (который воспринимается по заднему фронту) первый триггер изменяет своё состояние на противоположное, то есть единицу.

Запишем новое состояние выходов счётчика в ту же самую таблицу. Так как по приходу первого импульса изменилось состояние первого триггера, то этот триггер содержит младший разряд двоичного числа (единицы). В таблице поместим его значение на самом правом месте, как это принято при записи любых многоразрядных чисел. Здесь мы впервые сталкиваемся с противоречием правил записи чисел и правил распространения сигналов на принципиальных схемах.

Подадим на вход счётчика ещё один тактовый импульс. Значение первого триггера снова изменится на прямо противоположное. На этот раз на выходе первого триггера, а значит и на входе второго триггера сформируется задний фронт. Это означает, что второй триггер тоже изменит своё состояние на противоположное. Это отчётливо видно на временных диаграммах, приведённых на рисунке 4. Запишем новое состояние выходов счётчика в таблицу 1. В этой строке таблицы образовалось двоичное число 2. Оно совпадает с номером входного импульса.

Продолжая анализировать временную диаграмму, можно определить, что на выходах приведённой схемы счётчика последовательно появляются цифры от 0 до 15. Эти цифры записаны в двоичном виде. При поступлении на счётный вход счётчика очередного импульса, содержимое его триггеров увеличивается на 1. Поэтому такие счётчики получили название суммирующих двоичных счётчиков.

Таблица 1. Изменение уровней на выходе суммирующего счётчика при поступлении на его вход импульсов.

номер входного импульса Q3 Q2 Q1 Q0
1 1
2 1
3 1 1
4 1
5 1 1
6 1 1
7 1 1 1
8 1
9 1 1
10 1 1
11 1 1 1
12 1 1
13 1 1 1
14 1 1 1
15 1 1 1 1

Условно-графическое обозначение суммирующего двоичного счетчика на принципиальных схемах приведено на рисунке 5. В двоичных счётчиках обычно предусматривают вход обнуления микросхемы R, который позволяет записать во все триггеры счётчика нулевое значение. Это состояние иногда называют исходным состоянием счётчика.


Рисунок 5. Четырёхразрядный двоичный счётчик

Существуют готовые микросхемы асинхронных двоичных счётчиков. Классическим примером такого счётчика является микросхема 555ИЕ5. Подобные схемы существуют и внутри САПР программируемых логических интегральных схем.

Двоичные вычитающие асинхронные счётчики

Счётчики могут не только увеличивать своё значение на единицу при поступлении на счётный вход импульсов, но и уменьшать его. Такие счётчики получили название вычитающих счётчиков. Для реализации вычитающего счётчика достаточно чтобы T-триггер изменял своё состояние по переднему фронту входного сигнала.

Изменить рабочий фронт входного сигнала можно инвертированием этого сигнала. В схеме, приведенной на рисунке 6, для реализации вычитающего счётчика сигнал на входы последующих триггеров подаются с инверсных выходов предыдущих триггеров.


Рисунок 6 Схема четырёхразрядного двоичного вычитающего счётчика, построенного на универсальных D-триггерах

Временная диаграмма этого счётчика приведена на рисунке 7. По этой диаграмме видно, что при поступлении на вход счётчика первого же импульса на выходах появляется максимально возможное для четырёхразрядного счётчика число 1510. При поступлении следующих импульсов содержимое счётчика уменьшается на единицу.


Рисунок 7. Временная диаграмма четырёхразрядного вычитающего счётчика

Это вызвано тем, что при поступлении переднего фронта тактового импульса первый триггер переходит в единичное состояние. В результате на его выходе тоже формируется передний фронт. Он поступает на вход второго триггера, что приводит к записи единицы и в этот триггер. Точно такая же ситуация складывается со всеми триггерами счётчика, то есть все триггеры перейдут в единичное состояние. Для четырёхразрядного счётчика это и будет число 1510. Запишем новое состояние вычитающего счётчика в таблицу 2.

Следующий тактовый импульс приведёт к изменению состояния только первого триггера, так как при этом на его выходе сформируется задний фронт сигнала. Запишем и это состояние в таблицу 2. Обратите внимание, что при поступлении каждого последующего импульса содержимое счётчика, построенного по анализируемой схеме, уменьшается на единицу. Этот процесс продолжается до тех пор, пока состояние счётчика не станет вновь равно 0. При поступлении новых тактовых импульсов процесс повторяется снова.

Все возможные состояния логических сигналов на выходах вычитающего счётчика, при поступлении на счётный вход схемы тактовых импульсов приведены в таблице 2. Таблица 2 фактически повторяет временные диаграммы, приведённые на рисунке 7, однако она более наглядно представляет физику работы счётчика. Просто мы при работе с числами привыкли иметь дело с цифрами, а не с напряжениями, тем более в зависимости от времени.

Таблица 2. Изменение уровней на выходе вычитающего счётчика при поступлении на его вход импульсов.

номер входного импульса Q3 Q2 Q1 Q0
1 1 1 1 1
2 1 1 1
3 1 1 1
4 1 1
5 1 1 1
6 1 1
7 1 1
8 1
9 1 1 1
10 1 1
11 1 1
12 1
13 1 1
14 1
15 1

Для тех, кто привык работать с реально выпускаемыми микросхемами средней интеграции, следует обратить внимание, что для примера были использованы D-триггеры, работающие по заднему фронту. Микросхемы, выпускаемые промышленностью, например, 1533ТМ2 (два D-триггера в одном корпусе) или SN74LVC1G79 (микросхемы малой логики) срабатывают по переднему фронту, поэтому схемы для суммирующего и вычитающего счётчика поменяются местами.

Следует отметить, что при применении для реализации двоичных счетчиков современных схем большой интеграции, таких как программируемые пользователем вентильные матрицы FPGA, мы можем применять D-триггеры срабатывающие как по переднему (нарастающему), так и по заднему (спадающему фронту).

Вместе со статьей "Асинхронные счётчики" читают:

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *