0

Выносим из под корня

В данном материале мы продолжим рассказывать о том, как преобразовывать рациональные выражения, а конкретно о том, как правильно выносить множитель из-под знака корня. В первом пункте объясним, зачем нужно такое преобразование, далее покажем, как именно оно делается и сформулируем общее для всех случаев правило. Далее покажем, какие существуют методы, чтобы привести подкоренное выражение к удобному для преобразования виду, и разберем примеры решений задач.

Что такое вынесение множителя из-под знака корня

Чтобы лучше понять суть подобного преобразования, нужно сначала сформулировать, что такое вообще вынесение множителя из-под знака корня. Сформулируем определение:

Вынесение множителя из-под знака корня представляет собой замену выражения B n · C n на произведение B · C n с условием, что n – нечетное число, или же на произведение B · C – где n – четное число, а B и C – другие числа и выражения.

Если мы имеем в виду только квадратный корень, то есть число n равно двум, то процесс вынесения множителя можно свести к замене выражения B 2 · C на произведение B · C . Отсюда и название данного преобразования: после того, как оно было проведено, множитель B y оказывается свободным от знака корня.

Приведем примеры, поясняющие данное определение. Так, допустим, у нас есть выражение 2 2 · 3 . Оно аналогично B 2 · C , где B равно двум, а C – трем. Заменив данный корень на произведение 2 · 3 и опустив знаки модулей (это можно сделать, поскольку оба множителя являются положительными числами), мы получим 2 · 3 . Мы вынесли множитель 2 2 из-под знака корня.

Приведем еще один пример подобного преобразования. У нас есть выражение ( x 2 – 3 · x · y · z ) 2 · x = x 2 – 3 · x · y · z · x . Здесь из-под корня был вынесен не просто числовой множитель, а целое выражение с переменными ( x 2 − 3 · x · y · z ) 2 .

Оба примера относятся к случаю вынесения множителя из-под квадратного корня. Можно также производить данные преобразования и для корней n -ной степени. Вот пример с кубическим корнем: ( 3 · a 2 ) 3 · 2 · a 2 3 = 3 · a 2 · 2 · a 2 3

Пример с корнем шестой степени: 1 2 · x 2 + y 2 6 · 5 · ( x 2 + y 2 ) 6 можно преобразовать в произведение 1 2 · x 2 + y 2 · 5 · ( x 2 · y 2 ) 6 , которое, в свою очередь, упрощается до 1 2 · ( x 2 + y 2 ) · 5 · ( x 2 + y 2 ) 6 . В данном случае мы выносим множитель 1 2 · x 2 + y 2 6 .

Мы выяснили, что такое вынесение множителя из-под знака корня. Теперь перейдем к доказательствам, т.е. поясним, почему произведение, полученное в итоге данного преобразования, равнозначно исходному выражению.

Почему возможно заменить корень на произведение

В этом пункте мы будем разбираться, как возможна такая замена и почему корень B n · C n равнозначен произведениям B · C n и B · C n . Обратимся к ранее изученным теоретическим положениям.

Когда мы разбирали преобразование иррациональных выражений, у нас получились некоторые важные результаты, которые мы собрали в таблицу. Здесь нам будут нужны только два из них:

1. Выражение A · B n при условии нечетности n может быть заменено на A n · B n , а для четных n – A n · B n .

2. Выражение A n n при нечетном значении n может быть преобразовано в A , а при четном – в | A | .

Используя эти результаты и зная основные свойства модуля, мы можем вывести следующее:

  • при четном n : B n · C n = B n n · C n = B · C n ;
  • при нечетном n : B n · C n = B n n · C n = B n n · C n = B · C n .

Эти выражения лежат в основе преобразований, которые мы проводим, вынося множитель из-под знака корня.

Следовательно, можно вывести две формулы:

  • B 1 n · B 2 n · . . . · B k n · C n = B 1 · B 2 · . . . · B k · C n для нечетного n ;
  • B 1 n · B 2 n · . . . · B k n · C n = B 1 · B 2 · . . . · B k · C n для четного n .

Здесь B 1 , B 2 , и др. могут быть как числами, так и выражениями.

С помощью данных формул можно выполнить вынесение из-под корня сразу нескольких множителей.

Основное правило вынесения множителя из-под корня

Когда нам нужно решать примеры с подобными преобразованиями, чаще всего приходится предварительно приводить подкоренное выражение к виду B n · C . С учетом этого момента мы можем записать следующие правила.

Для вынесения множителя из-под корня в выражении A n нужно предварительно привести корень к виду B n · C n и после этого перейти к произведению B · C n (при нечетном показателе) или к B · C n (при четном показателе, при необходимости раскрываем модули).

Таким образом, схема решения подобных задач выглядит следующим образом:

A n → B n · C n → B · C n , е с л и n – н е ч е т н о е B · C n , е с л и n – ч е т н о е

Если нам надо вынести несколько множителей, то действуем так:

A n → B 1 n · B 2 n · . . . · B k n · C n → B 1 · B 2 · . . . · B k · C n , е с л и n – н е ч е т н о е B 1 · B 2 · . . . · B k · C n , е с л и n – ч е т н о е

Теперь можно переходить к решению задач.

Задачи на вынесение множителя из-под знака корня

Условие: выполните вынесение множителя за знак корня в трех выражениях: 2 2 · 7 , – 1 2 3 2 · 5 , ( – 0 , 4 ) 7 · 11 7 .

Решение

Мы видим, что подкоренные выражения во всех трех случаях уже имеют нужный нам вид. Поскольку в первых двух примерах показателем корня является четное число, а в третьем – нечетное, записываем следующее:

  1. Показатель корня равен 2 . Берем правило вынесения множителя для четного показателя и вычисляем: 2 2 · 7 = 2 · 7 = 2 · 7
  2. Во втором выражении показатель тоже четный, значит, – 1 2 3 2 · 5 = – 1 2 3 · 5 = 1 2 3 · 5
    В этом случае мы можем сначала преобразовать выражения, исходя из основных свойств корня:
    – 1 2 3 2 · 5 = – 1 2 · 1 2 3 2 · 5 = 1 2 3 2 · 5
    А потом уже выносить множитель: 1 2 3 2 · 5 = 1 2 3 · 5 = 1 2 3 · 5 .
  3. Последнее выражение имеет нечетный показатель, поэтому нам понадобится другое правило: ( – 0 , 4 ) 7 · 11 7 = – 0 , 4 · 11 7 .
    Возможен и такой вариант расчета:
    – 0 , 4 7 · 11 7 = ( – 1 ) 7 · 0 , 4 7 · 11 7 = = – 0 , 4 7 · 11 7 = – 0 , 4 7 · 11 7 = – 0 , 4 · 11 7
    ​​​​​​Или такой:
    – 0 , 4 7 · 11 7 = ( – 1 ) 7 · 0 , 4 7 · 11 7 = = – 0 , 4 7 · 11 7 = 0 , 4 7 · – 11 7 = 0 , 4 · – 11 7 = – 0 , 4 · 11 7

Ответ: 1 ) 2 · 7 ; 2 ) 1 2 3 · 5 ; 3 ) – 0 , 4 · 11 7 .

Условие: преобразуйте выражение ( – 2 ) 4 · ( 0 , 3 ) 4 · 7 4 · 11 4 .

Решение:

При помощи схемы, приведенной во втором пункте статьи, мы можем вынести из-под корня сразу три множителя.

( – 2 ) 4 · ( 0 , 3 ) 4 · 7 4 · 11 4 = = – 2 · 0 , 3 · 7 · 11 4 = 4 , 2 · 11 4

Можно сделать преобразование в несколько шагов, вынося множителя по одному, но так будет гораздо дольше.

Есть и другой способ. Преобразуем само выражение, приведя его к виду B n · C . После этого уже будем выносить множители:

( – 2 ) 4 · ( 0 , 3 ) 4 · 7 4 · 11 4 = = ( – 2 · 0 , 3 · 7 ) 4 · 11 4 = ( – 4 , 2 ) 4 · 11 4 = = – 4 , 2 · 11 4 = 4 , 2 · 11 4

Читайте также:  Втэ 1 ошибка 016

Ответ: ( – 2 ) 4 · ( 0 , 3 ) 4 · 7 4 · 11 4 = – 4 , 2 · 11 4 = 4 , 2 · 11 4 .

Разберем более подробно тот случай, когда подкоренное выражение требует предварительного преобразования. Здесь есть несколько моментов, которые нужно дополнительно пояснить.

Предварительное преобразование подкоренного выражения

Мы уже отмечали, что выражение под корнем не всегда имеет удобный для нас вид. Часто корень дан как A n , и множитель, который нужно вынести, не представлен в явном виде. Иногда это обозначено в условии, но довольно часто множитель приходится определять самостоятельно. Посмотрим, как надо действовать в этих случаях.

Допустим, нам надо вынести заранее определенный множитель B . Естественно, подкоренное выражение должно быть таким, чтобы эта операция была возможна. Тогда для преобразования A n в B n · C n достаточно определить второй множитель, т.е. вычислить значение C из выражения A = B n · C .

Условие: есть выражение 24 · x 3 . Вынесите из-под знака корня множитель 2 3 .

Решение

Здесь мы имеем n = 3 , A = 24 · x , B 3 = 2 3 . Тогда из A = B n · С вычисляем C = A : ( B n ) = 24 · x : ( 2 3 ) = 3 · x .

Значит, 24 · x 3 = 2 3 · 3 · x 3 . Подкоренное выражение имеет нужный нам вид, и мы можем воспользоваться правилом для нечетного показателя и подсчитать: 24 · x 3 = 2 3 · 3 · x 3 = 2 · 3 · x 3 .

Ответ: 24 · x 3 = 2 · 3 · x 3 .

А как быть в случае, если множитель, который нужно вынести, не указан? Тогда у нас есть определенная свобода выбора, и мы можем использовать несколько подходов к решению задачи.

Допустим, нам дано выражение, под корнем у которого стоит степень или произведение нескольких степеней. В таком случае, зная основные свойства степени, мы можем преобразовать выражение в удобный для нас вид с очевидно указанными множителями для вынесения.

Условие: необходимо вынести множитель из-под корня в трех выражениях – 2 4 · 5 4 , 2 7 · 5 4 , 2 22 · 5 4 .

Решение

Преобразование первого выражения не представляет особой сложности, т.к. подобные примеры мы уже разбирали. Сразу вычисляем: 2 4 · 5 4 = 2 · 5 4 = 2 · 5 4 .

Во втором примере легко догадаться, как преобразовать подкоренное выражение: нужно просто представить 2 7 как 2 4 · 2 3 .

2 7 · 5 4 = 2 4 · 2 3 · 5 4 = 2 4 · 40 4 = 2 · 40 4 = 2 · 40 4

В последнем примере также нужно начать с преобразования подкоренного выражения. Сразу отметим, что итоговый вид будет таким:

2 5 4 · 2 2 · 5 4

Теперь покажем, как именно прийти к этому виду. Сначала выполняем деление 22 на 4 , получаем 5 с остатком 2 (если нужно, повторите, как правильно выполнять деление с остатком). Иначе говоря, 22 можно рассматривать как 4 · 5 + 2 . Используя свойства степени, можем записать:

2 22 + 2 5 · 4 + 2 = 2 5 · 4 · 2 2 = ( 2 5 ) 4 · 2 2

2 22 · 5 4 = ( 2 5 ) 4 · 2 2 · 5 4 = ( 2 5 ) 4 · 20 4 = = 2 5 · 20 4 = 32 · 20 4

Ответ: 1 ) 2 4 · 5 4 = 2 · 5 4 , 2 ) 2 7 · 5 4 = 2 · 40 4 , 3 ) 2 22 · 5 4 = 32 · 20 4 .

Если выражение под корнем не является степенью или произведением степеней, надо попробовать представить его в таком виде. Чаще всего встречаются следующие случаи.

Подкоренное выражение – натуральное составное число. Тогда мы сразу можем увидеть нужные множители, которые надо вынести из-под знака корня, предварительно разложив данное число на простые множители.

Условие: выполните вынесение множителя из-под знака корня в следующих выражениях: 1 ) 45 ; 2 ) 135 ; 3 ) 3456 ; 4 ) 102 .

  1. Выполняем разложение 45 на простые множители.

45 15 5 1 3 3 5

То есть 45 = 3 · 3 · 5 = 3 2 · 5 , а 45 = 3 2 · 5 . В этом выражении видно, что выносить мы будем множитель 3 2 . Вычисляем:

3 2 · 5 = 3 · 5 = 3 · 5

  1. Теперь представим в нужном виде число 135 и получим: 135 = 3 · 3 · 3 · 5 = 3 3 · 15 . Иначе можно записать, что 3 2 · 3 · 5 = 3 2 · 15 . Следовательно, 135 = 3 2 · 15 . Мы видим, что вынесению из-под знака корня подлежит множитель 3 2 :

3 2 · 15 = 3 · 15 = 3 · 15

  1. Разложим на простые множители число 3456 :

3456 1728 864 432 216 108 54 27 9 3 1 2 2 2 2 2 2 2 3 3 3

У нас получилось, что 3456 = 2 7 · 3 3 , а 3456 = 2 7 · 3 3 . Поскольку 2 7 = 2 3 · 2 + 1 = ( 2 3 ) 2 · 2 и 3 3 = 3 2 · 3 , то 2 7 · 3 3 = ( 2 3 ) 2 · 2 · 3 2 · 3 = ( 2 3 ) 2 · 3 2 · 6 = = 2 3 · 3 · 6 = 24 · 6

  1. Представим натуральное число 102 как произведение простых множителей и получим 2 · 3 · 17 . Видим, что все множители имеют показатель, равный единице, а показатель корня в этом примере равен двум. Следовательно, в данном примере ни один множитель не нужно выносить из-под знака корня, то есть такое действие для 102 нецелесообразно.

Ответ: 1 ) 45 = 3 · 5 ; 2 ) 135 = 3 · 15 ; 3 ) 3456 = 24 · 6 ; 4 ) 102 .

Теперь разберем, как решать примеры, у которых подкоренное выражение представлено в виде обыкновенной дроби. В этом случае следует числитель и знаменатель разложить на простые множители и посмотреть, можно ли вынести какие-то из них за знак корня. Если у нас есть десятичная дробь или смешанное число, предварительно заменяем их обыкновенными дробями, после чего переходим от корня отношения к отношению корней.

Условие: выполните вынесение множителя за корень в выражении 200 · 0 , 000189 · x 3 и упростите его.

Решение

Для начала перейдем от десятичной дроби к обыкновенной и разложим ее числитель и знаменатель на простые множители.

0 , 189 = 189 1000000 = 3 3 · 7 2 6 · 5 6

Используя свойства степени, перепишем выражение в следующем виде:

3 2 2 · 5 2 3 · 7

Подставим получившееся выражение в исходное и получим:

200 · 0 , 000189 · x 3 = = 200 · 3 2 2 · 5 2 3 · 7 · x 3 = = 200 · 3 2 2 · 5 2 · 7 · x 3 = 6 · 7 · x 3

К такому же ответу можно прийти и с помощью других преобразований:

200 · 0 , 000189 · x 3 = = 200 · 189 1000000 · x 3 = 200 · 189 1000000 3 · x 3 = = 200 · 189 3 1000000 3 · x 3 = 200 · 3 3 · 7 3 100 3 3 · x 3 = = 200 · 3 · 7 3 100 · x 3 = 6 · 7 3 · x 3 = 6 · 7 · x 3

Ответ: 200 · 0 , 000189 · x 3 = 6 · 7 · x 3 .

Иными словами, для обнаружения множителя, который можно вынести за знак корня, можно преобразовывать подкоренное выражение любыми допустимыми способами.

Условие: выполните упрощение иррационального выражения 2 · ( 3 + 2 · 2 ) .

Решение

Мы можем преобразовать выражение в скобках как 2 + 2 · 2 + 1 и далее как 2 2 + 2 · 2 · 1 + 1 2 .

То, что у нас получилось, можно свернуть в квадрат суммы с помощью формулы сокращенного умножения: 2 2 + 2 · 2 · 1 + 1 = 2 + 1 2 .

В итоге: 2 · 3 + 2 · 2 = 2 · 2 + 1 2 . Теперь выносим 2 + 1 2 за знак корня и упрощаем выражение:

2 · 2 + 1 2 = 2 · 2 + 1 = = 2 · 2 + 1 = 2 + 2

Ответ: 2 · 3 + 2 · 2 = 2 + 2 .

Теперь посмотрим, как вынести из-под знака корня выражение, содержащее переменные. В целом можно сказать, что для этого используются те же методы, что и при работе с числами.

Условие: вынесите множитель из-под знака корня в выражениях ( x – 5 ) 5 4 и ( x – 5 ) 6 4 .

Решение

  1. Выполняем преобразование в первом примере.

( x – 5 ) 5 4 = ( x – 5 ) 4 · x – 5 4 = x – 5 · x – 5 4

Знак модуля можно опустить. Посмотрим, каким условием определяется область допустимых значений переменной для исходного выражения. Таким условием будет неравенство ( x − 5 ) 5 ≥ 0 . Для его решения выбираем метод интервалов и получаем x ≥ 5 . Если значение x принадлежит области допустимых значений, то значением выражения x – 5 будет неотрицательное число. Значит, можем записать следующее:

x – 5 · x – 5 4 = x – 5 · x – 5 4

  1. ( x – 5 ) 6 4 = ( x – 5 ) 4 · x – 5 2 4 = = x – 5 · ( x – 5 ) 2 4 = x – 5 · x – 5 2 4

Выполним сокращение показателей корня и степени на два. Обратимся к таблице результатов из статьи о преобразовании иррациональных выражений, о которой мы говорили выше. Возьмем из нее следующий результат: выражение A m n · m можно заменить на A n при условии, что m и n – натуральные числа. Следовательно,

Читайте также:  Двд плеер читающий все форматы

x – 5 · x – 5 2 4 = x – 5 · x – 5

Нужно ли здесь убирать знак модуля? Посмотрим на область допустимых значений данного выражения: ее составляют все действительные числа, поскольку ( x − 5 ) 6 ≥ 0 для любого x . При этом значения x − 5 могут быть больше 0 , если x > 5 , равными 0 или отрицательными. Значит, оставляем выражение в виде x – 5 · x – 5 или представляем его в виде системы уравнений

( x – 5 ) · x – 5 , x ≥ 5 ( 5 – x ) · 5 – x , x 5

Ответ: 1 ) ( x – 5 ) 5 4 = ( x – 5 ) · x – 5 4 ; 2 ) ( x – 5 ) 6 4 = x – 5 · x – 5 .

Условие: выполните упрощение выражения x 5 + 2 · x 4 · y + x 3 · y 2 .

Решение

Выносим за скобки x 3 и получаем x 3 · ( x 2 + 2 · x · y + y 2 ) . Выражение в скобках можно представить в виде квадрата суммы: x 3 · ( x 2 + 2 · x · y + y 2 ) = x 3 · ( x + y ) 2 .

Теперь видим множители, подлежащие вынесению из-под корня: x 3 · ( x + y ) 2 = x 2 · x · ( x + y ) 2 = x · x + y · x

Также мы можем убрать знаки модуля, в которых находится x, поскольку область допустимых значений будет определена условием x 5 + 2 · x 4 · y + x 3 · y 2 ≥ 0 . Оно равносильно x 3 · ( x + y ) 2 ≥ 0 , а из него можно сделать вывод, что x ≥ 0 . У нас получилось, что x · x + y · x .

Ответ: x 5 + 2 · x 4 · y + x 3 · y 2 = x · x + y · x .

Это все, что мы хотели бы вам рассказать о вынесении множителя за знак корня. В следующей статье мы разберем обратное действие – внесение множителя под корень.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень. "
И для тех, кто "очень даже. " )

В предыдущем уроке мы разобрались, что такое квадратный корень. Пришла пора разобраться, какие существуют формулы для корней, каковы свойства корней, и что со всем этим можно делать.

Формулы корней, свойства корней и правила действий с корнями – это, по сути, одно и то же. Формул для квадратных корней на удивление немного. Что, безусловно, радует! Вернее, понаписать всяких формул можно много, но для практической и уверенной работы с корнями достаточно всего трёх. Все остальное из этих трёх проистекает. Хотя и в трех формулах корней многие плутают, да.

Начнём с самой простой. Вот она:

Напоминаю (из предыдущего урока): а и b – неотрицательные числа! Иначе формула смысла не имеет.

Это свойство корней, как видите простое, короткое и безобидное. Но с помощью этой формулы корней можно делать массу полезных вещей! Разберём на примерах все эти полезные вещи.

Полезная вещь первая. Эта формула позволяет нам умножать корни.

Как умножать корни?

Да очень просто. Прямо по формуле. Например:

Казалось бы, умножили, и что? Много ли радости?! Согласен, немного. А вот как вам такой пример?

Из множителей корни ровно не извлекаются. А из результата – отлично! Уже лучше, правда? На всякий случай сообщу, что множителей может быть сколько угодно. Формула умножения корней всё равно работает. Например:

Так, с умножением всё ясно, зачем нужно это свойство корней – тоже понятно.

Полезная вещь вторая. Внесение числа под знак корня.

Как внести число под корень?

Предположим, что у нас есть вот такое выражение:

Можно ли спрятать двойку внутрь корня? Легко! Если из двойки сделать корень, сработает формула умножения корней. А как из двойки корень сделать? Да тоже не вопрос! Двойка – это корень квадратный из четырёх!

Корень, между прочим, можно сделать из любого неотрицательного числа! Это будет корень квадратный из квадрата этого числа. 3 – корень из 9. 8 – корень из 64. 11 – корень из 121. Ну, и так далее.

Конечно, расписывать так подробно нужды нет. Разве что, для начала. Достаточно сообразить, что любое неотрицательное число, умноженное на корень, можно внести под корень. Но – не забывайте! – под корнем это число станет квадратом самого себя. Это действие – внесение числа под корень – можно ещё назвать умножением числа на корень. В общем виде можно записать:

Процедура простая, как видите. А зачем она нужна?

Как и любое преобразование, эта процедура расширяет наши возможности. Возможности превратить жестокое и неудобное выражение в мягкое и пушистое). Вот вам простенький пример:

Как видите, свойство корней, позволяющее вносить множитель под знак корня, вполне годится для упрощения.

Кроме того, внесение множителя под корень позволяет легко и просто сравнивать значения различных корней. Безо всякого их вычисления и калькулятора! Третья полезная вещь.

Как сравнивать корни?

Это умение очень важно в солидных заданиях, при раскрытии модулей и прочих крутых вещах.

Сравните вот эти выражения. Какое из них больше? Без калькулятора! С калькулятором каждый. э-э-э. короче, каждый справится!)

Так сразу и не скажешь. А если внести числа под знак корня?

Запомним (вдруг, не знали?): если число под знаком корня больше, то и сам корень – больше! Отсюда сразу правильный ответ, безо всяких сложных вычислений и расчётов:

Здорово, да? Но и это ещё не всё! Вспомним, что все формулы работают как слева направо, так и справа налево. Мы пока формулу умножения корней слева направо употребляли. Давайте запустим это свойство корней наоборот, справа налево. Вот так:

И какая разница? Разве это что-то даёт!? Конечно! Сейчас сами увидите.

Предположим, нам нужно извлечь (без калькулятора!) корень квадратный из числа 6561. Кое-кто на этом этапе и падёт в неравной борьбе с задачей. Но мы упорные, мы не сдаёмся! Полезная вещь четвёртая.

Как извлекать корни из больших чисел?

Вспоминаем формулу извлечения корней из произведения. Ту, что я чуть выше написал. Но где у нас произведение!? У нас огромное число 6561 и всё. Да, произведения здесь нет. Но если нам надо – мы его сделаем! Разложим это число на множители. Имеем право.

Для начала сообразим, на что делится это число ровно? Что, не знаете!? Признаки делимости забыли!? Зря. Идите в Особый раздел 555, тема "Дроби", там они есть. На 3 и на 9 делится это число. Потому, что сумма цифр (6+5+6+1=18) делится на эти числа. Это один из признаков делимости. На три нам делить ни к чему (сейчас поймёте, почему), а вот на 9 поделим. Хотя бы и уголком. Получим 729. Вот мы и нашли два множителя! Первый – девятка (это мы сами выбрали), а второй – 729 (такой уж получился). Уже можно записать:

Улавливаете идею? С числом 729 поступим аналогично. Оно тоже делится на 3 и 9. На 3 опять не делим, делим на 9. Получаем 81. А это число мы знаем! Записываем:

Всё получилось легко и элегантно! Корень пришлось по кусочкам извлекать, ну и ладно. Так можно поступать с любыми большими числами. Раскладывать их на множители, и – вперёд!

Читайте также:  Ваш компьютер заблокирован роскомнадзором

Кстати, а почему на 3 делить не надо было, догадались? Да потому, что корень из трёх ровно не извлекается! Имеет смысл раскладывать на такие множители, чтобы хотя бы из одного корень хорошо извлекался. Это 4, 9, 16 ну, и так далее. Делите своё громадное число на эти числа поочерёдно, глядишь, и повезёт!

Но не обязательно. Может и не повезти. Скажем, число 432 при разложении на множители и использовании формулы корней для произведения даст такой результат:

Ну и ладно. Всё равно мы упростили выражение. В математике принято оставлять под корнем самое маленькое число из возможных. В процессе решения все зависит от примера (может и без упрощения всё посокращается), а вот в ответе надо дать результат, который уже дальнейшему упрощению не поддаётся.

Кстати, знаете, что мы с вами сейчас с корнем из 432 сделали?

Мы вынесли множители из-под знака корня! Вот так называется эта операция. А то попадётся задание – "вынести множитель из-под знака корня" а мужики-то и не знают. ) Вот вам ещё одно применение свойства корней. Полезная вещь пятая.

Как вынести множитель из-под корня?

Легко. Разложить подкоренное выражение на множители и извлечь корни, которые извлекаются. Смотрим:

Ничего сверхъестественного. Важно правильно выбрать множители. Здесь мы разложили 72 как 36·2. И всё получилось удачно. А могли разложить иначе: 72 = 6·12. И что!? Ни из 6, ни из 12 корень не извлекается. Что делать?!

Ничего страшного. Или поискать другие варианты разложения, или продолжать раскладывать всё до упора! Вот так:

Как видим, всё получилось. Это, кстати, не самый быстрый, но самый надёжный способ. Раскладывать число на самые маленькие множители, а затем собирать в кучки одинаковые. Способ успешно применяется и при перемножении неудобных корней. Например, надо вычислить:

Перемножать всё – сумасшедшее число получится! И как потом из него корень извлекать?! Опять на множители раскладывать? Не, лишняя работа нам ни к чему. Сразу раскладываем на множители и собираем одинаковые по кучкам:

Вот и всё. Конечно, раскладывать до упора не обязательно. Всё определяется вашими личными способностями. Довели пример до состояния, когда вам всё ясно, значит, можно уже считать. Главное – не ошибаться. Не человек для математики, а математика для человека!)

Применим знания к практике? Начнём с простенького:

Как выносить из под корня число

Часто вынесение множителя (числа) из под знака корня может быть необходимо для совершения каких-либо арифметических операций, например, для сокращения дроби или вынесения общего множителя и дальнейшего преобразования выражения.

Давайте рассмотрим основные арифметические правила и определения, необходимые для того, чтобы понять, как вынести число из под корня.

Необходимые операции и определения

Разложение выражения на множители — это преобразование этого числа в произведение нескольких сомножителей без изменения значения исходного выражения.

Это довольно частая операция, необходимая для вынесения множителя из-под знака корня.

Для разложения на множители используются следующие приёмы:

  • Вынесение за скобки общего множителя;
  • Группировка множителей;
  • Применение формул сокращённого умножения;
  • Комбинация вышеизложенных методов.

При вынесении за скобки общего множителя для начала нужно определить множитель, который можно вынести, а затем разделить всё выражение на этот множитель и записать результат частного рядом со множителем как произведение, например:

Попробуй обратиться за помощью к преподавателям

$6x^2 – 8xy +4x = 2x cdot 3x – 2x cdot 4y + 2x cdot 2 = 2x cdot (3x – 4y + 2)$.

Также для вынесения множителя используются формулы сокращённого умножения, например:

$(x + y)^2 = x^2 +2xy + y^2$.

Оба продемонстрированных выше метода можно комбинировать.

Свойства корня

Теперь перейдём к более детальному рассмотрению корня.

Корнем $n$-нной степени из числа $b$ называют число, которое нужно возвести в $n$-нную степень чтобы получить число $b$:

Процесс получения корня называется его извлечением.

Левая часть равенства вида $sqrt[n] = m$ называется радикалом, то, что стоит непосредственно под знаком корня — подкоренным выражением, а число, стоящее слева сверху перед знаком корня называется показателем корня.

Правая же часть равенства после знака «равно» называется корнем $n$-нной степени из числа $b$.

Задай вопрос специалистам и получи
ответ уже через 15 минут!

При извлечении числа из-под корня нужно учитывать то, что в случае с корнем нечётной степени возможен лишь один ответ, математически это запишется так: $sqrt[n] = b$, тогда как в случае с извлечением корня чётной степени ответа будет два, причём один с положительным знаком, а другой с отрицательным, это записывается так: $sqrt[n] = ±b$.

Также существует ещё одна теорема, которую нужно знать при вынесении множителя из-под знака корня:

Для извлечения корня $n$-ой степени из произведения, моно извлечь его из каждого сомножителя отдельно, а результаты перемножить. Математически это запишется так: $sqrt[n]=sqrt[n]sqrt[n]sqrt[n]left(1
ight)$.

Докажем эту теорему для случая если под корнем стоит положительное число, а степень $n$ является нечётной.

Применим эту логику к равенству $(1)$.

Для этого возведём в степень правую часть равенства. Но для того чтобы сделать это, необходимо возвести в степень произведение, а для этого нужно возвести в степень каждый сомножитель и затем перемножить их все между собой:

Получилось выражение, стоящее под знаком корня, а это значит, что теорема доказана.

Правила вынесения множителя из под знака корня

Вынесение множителя из-под знака корня $n$-ой степени — это упрощение выражения с помощью записи какого-либо множителя, являющегося частью подкоренного выражения, перед знаком корня. Например, $sqrt[6] <192>= sqrt[6] <64 cdot 3>= 2 sqrt[6]<3>$.

Для вынесения множителей из-под знака корня необходимо показатель выносимого множителя разделить на показатель корня и разместить перед корнем этот множитель с тем показателем степени, который получится в результате этого деления:

В частном случае, если приходится иметь дело с квадртным корнем, степень множителя, который необходимо вынести, нужно разделить на два, а сам множитель записать перед знаком корня:

В случае если приходится иметь дело с множителем-дробью, можно извлечь по отдельности корень из числителя и знаменателя, например:

Общий порядок вынесения множителя из под корня такой:

  1. Сначала подкоренное значение раскладывается на множители непосредственно под знаком корня, а у этих множителей выделяются показатели степени.
  2. Затем показатель степени при множителе делится на показатель корня, а сам выносимый множитель записывается слева от радикала.

Вынесите множитель из-под знака корня в следующих выражениях:

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *