0

Выпрямитель на диодах шоттки схема

Какие бывают выпрямители?

Ещё в начале ХХ века имел место очень принципиальный спор между корифеями электротехники. Какой ток выгоднее передавать потребителю на большие расстояния: постоянный или переменный? Научный спор выиграли сторонники передачи переменного тока по проводам высоковольтных линий от подстанции к потребителю. Эта система принята во всём мире и успешно эксплуатируется до сих пор.

Но большинство электронной техники и не только бытовой, но и промышленной питается постоянными напряжениями и это привело к созданию целой отрасли электрики – преобразование (выпрямление) переменного тока. После того как электронная лампа была забыта, главным элементом любого выпрямителя стал полупроводниковый диод.

Схемотехника выпрямителей весьма обширна, но самым простым является однополупериодный выпрямитель.

Однополупериодный выпрямитель.

Напряжение с вторичной обмотки силового трансформатора подаётся на один единственный диод. Вот схема.

Поэтому выпрямитель и назван однополупериодным. Выпрямляется только один полупериод и на выходе получается импульсное напряжение. Форма его показана на рисунке.

Схема проста и не требует большого количества элементов. Это и сказывается на качестве выпрямленного напряжения. При низких частотах переменного напряжения (например, как в электросети – 50 Гц) выпрямленное напряжение получается сильно пульсирующим. А это очень плохо.

Для того чтобы снизить величину пульсации выпрямленного напряжения приходится брать величину конденсатора С1 очень большую, порядка 2000 – 5000 микрофарад, что увеличивает размер блока питания, так как электролиты на 2000 – 5000 мкф имеют довольно большие размеры. Поэтому на низких частотах эта схема практически не используется. Зато однополупериодные выпрямители прекрасно зарекомендовали себя в импульсных блоках питания работающих на частотах 10 – 15 кГц (килогерц). На таких частотах величина ёмкости фильтра может быть очень небольшой, а простота схемы уже не столь сильно влияет на качество выпрямленного напряжения.

Примером использования однополупериодного выпрямителя может служить простой зарядник от сотового телефона. Так как зарядник сам по себе маломощный, то в нём применяется однополупериодная схема, причём как во входном сетевом выпрямителе 220V (50Гц), так и в выходном, где требуется выпрямить переменное напряжение высокой частоты со вторичной обмотки импульсного трансформатора.

К несомненным достоинствам такого выпрямителя следует отнести минимум деталей, низкую стоимость и простые схемные решения. В обычных (не импульсных) блоках питания многие десятилетия успешно работают двухполупериодные выпрямители.

Двухполупериодные выпрямители.

Они бывают двух схемных решений: выпрямитель со средней точкой и мостовая схема, известная, как схема Гретца. Выпрямитель со средней точкой требует более сложного в исполнении силового трансформатора, хотя диодов там используется в два раза меньше чем в мостовой схеме. К недостаткам двухполупериодного выпрямителя со средней точкой можно отнести то, что для получения одинакового напряжения, число витков во вторичной обмотке трансформатора должно быть в два раза больше, чем при использовании мостовой схемы. А это уже не совсем экономично с точки зрения расходования медного провода.

Далее на рисунке показана типовая схема двухполупериодного выпрямителя со средней точкой.

Величина пульсаций выпрямленного напряжения меньше чем у однополупериодного выпрямителя и величину конденсатора фильтра так же можно использовать гораздо меньшую. Наглядно увидеть, как работает двухполупериодная схема можно по рисунку.

Как видим, на выходе выпрямителя уже в два раза меньше "провалов" напряжения – тех самых пульсаций.

Активно применяется схема выпрямителя со средней точкой в выходных выпрямителях импульсных блоков питания для ПК. Так как во вторичной обмотке высокочастотного трансформатора требуется меньшее число витков медного провода, то гораздо эффективнее применять именно эту схему. Диоды же применяются сдвоенные, т.е. такие, у которых общий корпус и три вывода (два диода внутри). Один из выводов – общий (как правило катод). По виду сдвоенный диод очень похож на транзистор.

Наибольшую популярность приобрела в бытовой и промышленной аппаратуре мостовая схема. Взгляните.

Можно без преувеличения сказать, что это самая распространённая схема. На практике вы с ней ещё не раз встретитесь. Она содержит четыре полупроводниковых диода, а на выходе, как правило, ставится RC-фильтр или только электролитический конденсатор для сглаживания пульсаций напряжения.

О данной схеме уже рассказывалось на странице про диодный мост. Стоит отметить, что и у мостовой схемы есть недостатки. Как известно, у любого полупроводникового диода есть так называемое прямое падение напряжения (Forward voltage dropVF). Для обычных выпрямительных диодов оно может быть 1 – 1,2 V (зависит от типа диода). Так вот, при использовании мостовой схемы на диодах теряется напряжение, равное 2 x VF, т.е. около 2 вольт. Это происходит потому, что в выпрямлении одной полуволны переменного тока участвуют 2 диода (затем другие 2). Получается, что на диодном мосте теряется часть напряжения, которое мы снимаем со вторичной обмотки трансформатора, а это явные потери. Поэтому в некоторых случаях в составе диодного моста применяются диоды Шоттки, у которых прямое падение напряжения невелико (около 0,5 вольта). Правда, стоит учесть, что диод Шоттки не рассчитан на большое обратное напряжение и очень чувствителен к его превышению.

Большой интерес вызывает выпрямитель с удвоением напряжения.

Выпрямитель с удвоением напряжения.

Принцип удвоителя напряжения Латура-Делона-Гренашера основан на поочерёдном заряде-разряде конденсаторов С1 и С2 разными по полярности полуволнами входного напряжения. В результате между катодом одного диода и анодом второго диода возникает напряжение в два раза превышающее входное. Схема в студию:)

Стоит отметить, что данная схема применяется в блоках питания нечасто. Но её можно смело использовать, если необходимо вдвое увеличить напряжение, которое снимается со вторичной обмотки трансформатора. Это будет более логичным и правильным решением, чем перематывать вторичную обмотку трансформатора с целью увеличить выходное напряжение вторичной обмотки в 2 раза (ведь при этом придётся наматывать вторичную обмотку с вдвое большим числом витков). Так что, если не удалось найти подходящий трансформатор – смело применяем данную схему.

Развитием схемы стало создание умножителя на полупроводниковых диодах.

Умножитель напряжения.

Каждый диод и конденсатор образуют «звено» и эти звенья можно соединять последовательно до получения напряжения в несколько десятков киловольт. Конечно, для этого входное напряжение тоже должно быть достаточно большим.

На рисунке изображён четырёхзвенный умножитель и на выходе мы получаем напряжение в четыре раза превышающее входное (U). Эти выпрямители получили большое распространение там, где нужно получить высокое напряжение при достаточно малом токе. Например, по такой схеме были выполнены источники высокого напряжения в старых телевизорах и осциллографах для питания анода электронно-лучевой трубки.

Сейчас такие источники питания используются в научных лабораториях, в детекторах элементарных частиц, в медицинской аппаратуре (люстра Чижевского) и в оружии самообороны (электрошокер). При повторении подобных конструкций и подборе деталей, следует учитывать рабочее напряжение, как диодов, так и конденсаторов исходя из напряжения, которое вы хотите получить. Весь умножитель, как правило, заливается специальным компаундом или эпоксидной смолой во избежание высоковольтных пробоев между элементами схемы.

Для нормальной работы некоторых устройств как, например, люстры Чижевского необходимы достаточно высокие напряжения. Как считают специалисты, излучатель отрицательных аэроионов, эффективен только при напряжении не менее 60 киловольт.

Трёхфазные выпрямители.

Устройства, которые используются для получения постоянного тока из переменного трёхфазного тока, называются трёхфазными выпрямителями. Трёхфазные выпрямители в бытовой технике, конечно, не используются. Единственный прибор, который может использоваться в быту это сварочный аппарат. В качестве трёхфазных выпрямителей используются наработки двух известных электротехников Миткевича и Ларионова. Самая простая схема Миткевича называется «три четверти моста параллельно», что означает три силовых диода включенных параллельно через вторичные обмотки трёхфазного трансформатора. Схема.

Читайте также:  Восстановить данные excel файла

Коэффициент пульсаций на нагрузке очень мал, что позволяет использовать конденсаторы фильтра небольшой ёмкости и малых габаритов.

Более сложной является схема Ларионова, которая называется «три полумоста параллельно», что это такое хорошо видно из рисунка.

В схеме используется уже шесть диодов и немного другая схема включения. Вообще схем трёхфазных выпрямителей достаточно много и наиболее совершенной, хотя редко употребляемой является схема «шесть мостов параллельно», а это уже 24 диода! Зато эта схема может выдавать высокое напряжение при большой мощности.

Трёхфазные мощные выпрямители используются в электровозах, городском электротранспорте (трамвай, троллейбус, метро), в промышленных установках для электролиза. Так же промышленные системы очистки газовых смесей, буровое и сварочное оборудование используют трёхфазные выпрямители.

Теперь вы знаете, какие бывают выпрямители переменного тока и сможете легко обнаружить их на принципиальной схеме или печатной плате любого прибора. А для тех, кто хочет знать больше, рекомендуем ознакомиться с книгой "Полупроводниковые выпрямители".

Какие бывают выпрямители?

Ещё в начале ХХ века имел место очень принципиальный спор между корифеями электротехники. Какой ток выгоднее передавать потребителю на большие расстояния: постоянный или переменный? Научный спор выиграли сторонники передачи переменного тока по проводам высоковольтных линий от подстанции к потребителю. Эта система принята во всём мире и успешно эксплуатируется до сих пор.

Но большинство электронной техники и не только бытовой, но и промышленной питается постоянными напряжениями и это привело к созданию целой отрасли электрики – преобразование (выпрямление) переменного тока. После того как электронная лампа была забыта, главным элементом любого выпрямителя стал полупроводниковый диод.

Схемотехника выпрямителей весьма обширна, но самым простым является однополупериодный выпрямитель.

Однополупериодный выпрямитель.

Напряжение с вторичной обмотки силового трансформатора подаётся на один единственный диод. Вот схема.

Поэтому выпрямитель и назван однополупериодным. Выпрямляется только один полупериод и на выходе получается импульсное напряжение. Форма его показана на рисунке.

Схема проста и не требует большого количества элементов. Это и сказывается на качестве выпрямленного напряжения. При низких частотах переменного напряжения (например, как в электросети – 50 Гц) выпрямленное напряжение получается сильно пульсирующим. А это очень плохо.

Для того чтобы снизить величину пульсации выпрямленного напряжения приходится брать величину конденсатора С1 очень большую, порядка 2000 – 5000 микрофарад, что увеличивает размер блока питания, так как электролиты на 2000 – 5000 мкф имеют довольно большие размеры. Поэтому на низких частотах эта схема практически не используется. Зато однополупериодные выпрямители прекрасно зарекомендовали себя в импульсных блоках питания работающих на частотах 10 – 15 кГц (килогерц). На таких частотах величина ёмкости фильтра может быть очень небольшой, а простота схемы уже не столь сильно влияет на качество выпрямленного напряжения.

Примером использования однополупериодного выпрямителя может служить простой зарядник от сотового телефона. Так как зарядник сам по себе маломощный, то в нём применяется однополупериодная схема, причём как во входном сетевом выпрямителе 220V (50Гц), так и в выходном, где требуется выпрямить переменное напряжение высокой частоты со вторичной обмотки импульсного трансформатора.

К несомненным достоинствам такого выпрямителя следует отнести минимум деталей, низкую стоимость и простые схемные решения. В обычных (не импульсных) блоках питания многие десятилетия успешно работают двухполупериодные выпрямители.

Двухполупериодные выпрямители.

Они бывают двух схемных решений: выпрямитель со средней точкой и мостовая схема, известная, как схема Гретца. Выпрямитель со средней точкой требует более сложного в исполнении силового трансформатора, хотя диодов там используется в два раза меньше чем в мостовой схеме. К недостаткам двухполупериодного выпрямителя со средней точкой можно отнести то, что для получения одинакового напряжения, число витков во вторичной обмотке трансформатора должно быть в два раза больше, чем при использовании мостовой схемы. А это уже не совсем экономично с точки зрения расходования медного провода.

Далее на рисунке показана типовая схема двухполупериодного выпрямителя со средней точкой.

Величина пульсаций выпрямленного напряжения меньше чем у однополупериодного выпрямителя и величину конденсатора фильтра так же можно использовать гораздо меньшую. Наглядно увидеть, как работает двухполупериодная схема можно по рисунку.

Как видим, на выходе выпрямителя уже в два раза меньше "провалов" напряжения – тех самых пульсаций.

Активно применяется схема выпрямителя со средней точкой в выходных выпрямителях импульсных блоков питания для ПК. Так как во вторичной обмотке высокочастотного трансформатора требуется меньшее число витков медного провода, то гораздо эффективнее применять именно эту схему. Диоды же применяются сдвоенные, т.е. такие, у которых общий корпус и три вывода (два диода внутри). Один из выводов – общий (как правило катод). По виду сдвоенный диод очень похож на транзистор.

Наибольшую популярность приобрела в бытовой и промышленной аппаратуре мостовая схема. Взгляните.

Можно без преувеличения сказать, что это самая распространённая схема. На практике вы с ней ещё не раз встретитесь. Она содержит четыре полупроводниковых диода, а на выходе, как правило, ставится RC-фильтр или только электролитический конденсатор для сглаживания пульсаций напряжения.

О данной схеме уже рассказывалось на странице про диодный мост. Стоит отметить, что и у мостовой схемы есть недостатки. Как известно, у любого полупроводникового диода есть так называемое прямое падение напряжения (Forward voltage dropVF). Для обычных выпрямительных диодов оно может быть 1 – 1,2 V (зависит от типа диода). Так вот, при использовании мостовой схемы на диодах теряется напряжение, равное 2 x VF, т.е. около 2 вольт. Это происходит потому, что в выпрямлении одной полуволны переменного тока участвуют 2 диода (затем другие 2). Получается, что на диодном мосте теряется часть напряжения, которое мы снимаем со вторичной обмотки трансформатора, а это явные потери. Поэтому в некоторых случаях в составе диодного моста применяются диоды Шоттки, у которых прямое падение напряжения невелико (около 0,5 вольта). Правда, стоит учесть, что диод Шоттки не рассчитан на большое обратное напряжение и очень чувствителен к его превышению.

Большой интерес вызывает выпрямитель с удвоением напряжения.

Выпрямитель с удвоением напряжения.

Принцип удвоителя напряжения Латура-Делона-Гренашера основан на поочерёдном заряде-разряде конденсаторов С1 и С2 разными по полярности полуволнами входного напряжения. В результате между катодом одного диода и анодом второго диода возникает напряжение в два раза превышающее входное. Схема в студию:)

Стоит отметить, что данная схема применяется в блоках питания нечасто. Но её можно смело использовать, если необходимо вдвое увеличить напряжение, которое снимается со вторичной обмотки трансформатора. Это будет более логичным и правильным решением, чем перематывать вторичную обмотку трансформатора с целью увеличить выходное напряжение вторичной обмотки в 2 раза (ведь при этом придётся наматывать вторичную обмотку с вдвое большим числом витков). Так что, если не удалось найти подходящий трансформатор – смело применяем данную схему.

Развитием схемы стало создание умножителя на полупроводниковых диодах.

Умножитель напряжения.

Каждый диод и конденсатор образуют «звено» и эти звенья можно соединять последовательно до получения напряжения в несколько десятков киловольт. Конечно, для этого входное напряжение тоже должно быть достаточно большим.

На рисунке изображён четырёхзвенный умножитель и на выходе мы получаем напряжение в четыре раза превышающее входное (U). Эти выпрямители получили большое распространение там, где нужно получить высокое напряжение при достаточно малом токе. Например, по такой схеме были выполнены источники высокого напряжения в старых телевизорах и осциллографах для питания анода электронно-лучевой трубки.

Сейчас такие источники питания используются в научных лабораториях, в детекторах элементарных частиц, в медицинской аппаратуре (люстра Чижевского) и в оружии самообороны (электрошокер). При повторении подобных конструкций и подборе деталей, следует учитывать рабочее напряжение, как диодов, так и конденсаторов исходя из напряжения, которое вы хотите получить. Весь умножитель, как правило, заливается специальным компаундом или эпоксидной смолой во избежание высоковольтных пробоев между элементами схемы.

Читайте также:  Гарантия на светодиодные лампы икеа

Для нормальной работы некоторых устройств как, например, люстры Чижевского необходимы достаточно высокие напряжения. Как считают специалисты, излучатель отрицательных аэроионов, эффективен только при напряжении не менее 60 киловольт.

Трёхфазные выпрямители.

Устройства, которые используются для получения постоянного тока из переменного трёхфазного тока, называются трёхфазными выпрямителями. Трёхфазные выпрямители в бытовой технике, конечно, не используются. Единственный прибор, который может использоваться в быту это сварочный аппарат. В качестве трёхфазных выпрямителей используются наработки двух известных электротехников Миткевича и Ларионова. Самая простая схема Миткевича называется «три четверти моста параллельно», что означает три силовых диода включенных параллельно через вторичные обмотки трёхфазного трансформатора. Схема.

Коэффициент пульсаций на нагрузке очень мал, что позволяет использовать конденсаторы фильтра небольшой ёмкости и малых габаритов.

Более сложной является схема Ларионова, которая называется «три полумоста параллельно», что это такое хорошо видно из рисунка.

В схеме используется уже шесть диодов и немного другая схема включения. Вообще схем трёхфазных выпрямителей достаточно много и наиболее совершенной, хотя редко употребляемой является схема «шесть мостов параллельно», а это уже 24 диода! Зато эта схема может выдавать высокое напряжение при большой мощности.

Трёхфазные мощные выпрямители используются в электровозах, городском электротранспорте (трамвай, троллейбус, метро), в промышленных установках для электролиза. Так же промышленные системы очистки газовых смесей, буровое и сварочное оборудование используют трёхфазные выпрямители.

Теперь вы знаете, какие бывают выпрямители переменного тока и сможете легко обнаружить их на принципиальной схеме или печатной плате любого прибора. А для тех, кто хочет знать больше, рекомендуем ознакомиться с книгой "Полупроводниковые выпрямители".

Многие говорят что в выпрямителях усилителей должны использоваться только лишь диоды Шоттки, или сверхбыстрые диоды ("суперфаст" – это если по-русски ). Если поставить обычные "медленные" диоды, то Великий Аудиофильский Дух обидится и хорошего звука вам не видать! На наше счастье, Великий Аудиофильский Дух может навредить только тем, кто в него верит. Давайте попробуем разобраться в необходимости применения таких диодов без привлечения эзотерики, а при помощи одной лишь науки и техники.

Единственная претензия, предъявляемая к диодам, состоит в том, что они медленно закрываются, и при этом через них будто бы протекает обратный ток, разряжающий конденсаторы фильтра. Говорят, что это происходит примерно так, как показано на рис.1 красной линией.

Рис. 1. Красная линия – ток разряда диода, если он (диод) медленно закрывается.

Называют две основных причины протекания обратного тока:

1. Рассасывание объемного заряда в базе диода, в течение которого диод еще не закрылся.

2. Заряд емкости обратно смещенного n-p перехода, когда диод уже закрылся.

Мы разберем обе эти причины. Но сначала давайте подумаем вот о чем: если бы через диод протекал бы большой обратный ток (даже такой, как на рисунке 1), то конденсаторы фильтра разряжались бы сразу после своей зарядки, и напряжения питания никакого бы и не было! Раз выпрямители работают даже на медленных диодах, то разряд этот не такой уж большой и страшный (и почему-то в профессиональных методах рассчета выпрямителей про этот самый обратный ток вообще ничего не говорится!).

Начнем с эксперимента – практика, как известно, – критерий истины. Соберем схему простейшего выпрямителя с обычным "медленным" диодом (рис.2):

Рис. 2. Схема выпрямителя.

Вот как это выглядит в реальности:

Рис. 3. Фото выпрямителя.

Посмотрим на осциллографе ток через диод, ток довольно большой – максимальная амплитуда 12 ампер, что соответствует работе диода в реальных условиях:

Рис.4 Ток через диод.

Чего-то не видно этих самых токов разряда. Для большей наглядности изменим масштаб и добавим на осциллограмму линию развертки, чтобы был виден ноль, и если бы график нырял вниз вследствие тока разряда, это было бы хорошо заметно (рис.5):

Рис.5 Тот же самый ток через тот же самый диод.

Сравните рис.1 и рис.5. В реальности не хватает той части, которая соответствует разряду конденсатора обратным током диода. Значит ли это, что такого тока нет вообще? Нет, обратный ток есть, просто он настолько мизерный, что обнаружить его обычным осциллографом в таком простом эксперименте невозможно (я даже так с ходу и не скажу, как можно измерить ток разряда в моем выпрямителе).

Давайте попробуем прикинуть, какой разрядный ток будет протекать через диод и насколько этот ток разрядит конденсатор фильтра. Я использую упрощенный расчет, так как при полном правильном расчете не обойтись без интегралов и прочей высшей математики. Упрощение сильно снизит точность (и завысит результаты!), но порядок цифр будет более-менее верным, и мы его наглядно представим.

Для простоты давайте рассчитаем мой выпрямитель, который я исследовал.

Причина 1.

Рассасывание объемного заряда в базе диода, вследствие чего он остается некоторое время в открытом состоянии. Время рассасывания возьмем 10 микросекунд. Это весьма большое время и у большинства диодов оно заметно меньше. Принцип расчета показан на рис. 6.

Рис.6. Обратный ток диода и обратное напряжение, вызывающее этот ток.

Итак, какое-то время диод открыт в прямом направлении и проводит прямой ток. После чего он должен закрыться, чтобы не пропустить ток обратный. Но диод не закрывается, и начинает пропускать обратный ток, показанный на рис.6 внизу красной линией. Ток протекает в течение времени , равному времени рассасывания, т.е. у нас = 10 мкс. При этом к диоду приложено обратное напряжение , из-за которого на самом деле и протекает обратный ток (а из-за чего еще ему протекать?).

Если мы узнаем , то можно будет определить и ток, а зная ток и время, которое он протекает – определить разряд конденсатора фильтра.

Поехали. Посмотрим, что там делается на самом деле – реальная осциллограмма на рис.7 (а линии на ней довольно условны):

Рис. 7. Осциллограмма напряжения и тока диода с необходимыми построениями.

Для нахождения определимся со временем и фазовыми углами. Находим цену деления по горизонтали: 360 градусов = 50 делений, значит одно деление 7,2 градуса. От начала периода напряжения до конца протекания тока диода:

Это начало обратного тока диода. Обратный ток длится =10 мксек. Переведем секунды в градусы: один период синусоиды 360 градусов = 20 миллисек, а 10 мкс – Х. Из пропорции находим, что Х = 10 мкс = 0,18 градуса. Следовательно, конец протекания обратного ток диода – 136,98 градуса.

Итак, – это разность напряжений между точками «а» и «б» на рисунках 6 и 7. Напряжение в точке «а»:

Напряжение в точке «б»:

Теперь найдем ток через диод. Объемное сопротивление базы Rб мощных диодов примерно равно 0,05 Ом. Ток по закону Ома:

Ну а теперь посмотрим, насколько же разряжается конденсатор фильтра при разряде током 1,6 А в течение 10 мкс:

На самом деле конденсатор разрядится намного меньше (из-за того, что ток не все время остается максимальным). Но и то, сравните напряжение на заряженном конденсаторе = 28,2 вольта и эти несчастные 1,6 мВ! Конечно их будет незаметно, ведь это 0,006% от напряжения на конденсаторе.

Итак, можем ли мы пренебречь разрядом конденсатора на 0,006%? Я так думаю, что можем. Если же поставить быстрый диод с временем рассасывания 100 нс, то разряд конденсатора уменьшится раз в 100 и будет равен 0,00006%. Выигрыш – ну просто обалденный. А народ еще спорит, какие диоды лучше – с временем восстановления 50 нс или все же подойдут 70 нс диоды!

В чем заключается упрощение расчета? В том, что на самом деле обратное напряжение на диоде растет медленно, и обратный ток тоже растет медленно и имеет примерно такую форму, как на рис. 6 (т.е. было неправильно делить максимальное напряжение на сопротивление). Поэтому максимальный ток на самом деле будет раз в пять-десять меньше, чем мы посчитали. И максимальным он будет не все время, а лишь чуть-чуть. И разряд конденсатора – тоже будет меньше в несколько раз.

Причина 2.

Читайте также:  Болгарские конденсаторы содержание драгметаллов

Обратный ток через емкость запертого диода.

Прежде чем рассуждать о емкостном токе, вспомним, что существует такая схема включения диодов моста (рис.8), и она имеет ряд преимуществ перед обыкновенной.

Рис.8. Диодный мост, шунтированный конденсаторами.

В этой схеме емкость конденсаторов раз в 30 превышает емкость диодов, значит и обратный ток через конденсаторы течет в 30 раз больше (т.е. как бы обратный ток через емкость диода повышается в 30 раз), но никто почему-то не плачет по этому поводу.

Но у нас просто одиночный диод, его емкость порядка 300 пикофарад. Для того, чтобы определить, насколько заряд этой емкости «посадит» конденсатор фильтра, воспользуемся формулой:

Тогда, учитывая, что максимальное напряжение конденсатора 28,2 В:

Это в 1000 раз меньше, чем из-за объемного заряда и на такой мизер внимания обращать вообще нельзя! Точно также, при подключении конденсаторов параллельно диодам, снижение напряжение на конденсаторе фильтра будет 30. 50 мкВ – подключайте конденсаторы на здоровье!

Вот и все. Никаких других объективных причин влияния "медленности" диода на работу выпрямителя не существует! (разве что ВЧ помехи про которые ниже). Что там думает себе Великий Аудиофильский Дух – нам по барабану, давайте обсудим результаты.

Итак, что же получается? Обыкновенные «медленные» диоды никакого заметного разряда конденсаторов фильтра и не вызывают! А как же тогда быть с утверждениями: «я заменил обычные диоды на ультрафаст, и усилитель зазвучал!»? Ну, во-первых, на это есть первый закон самовнушения: «Если в системе заменить даже самый маленький проводок, система сразу зазвучит лучше». Этот закон объясняет 80% всех наших улучшений звучания (так хорошо слышимых на слух). На самом деле, никакого ужасного разряда конденсаторов «медленными» диодами не происходит, и значит не происходит никакого изменения звука от применения ультрафаст диодов. Это все аудиофильские сказки. Кроме того – самое главное – разряд конденсаторов питания всего лишь уменьшает напряжение питания! Ну и как это скажестя на качестве звучания?

А как же быть с тем, что в импульсных блоках питания, например компьютерных, устанавливают ультрафасты или Шоттки? Все верно. На тех частотах, на которых работают импульсные блоки, время закрывания диода будет равно уже порядка 1/3 периода (а не 1/2000, как на частоте 50 Гц), и это слишком много. Кроме того, импульсные сигналы имеют крутые фронты, и там напряжение на диоде изменяется резко, поэтому высокое обратное напряжение появляется сразу, что вызывает высокие обратные токи.

Есть и отрицательная сторона "скорости" диода. Отпирание/запирание диодов создает импульсы тока с довольно резкими фронтами, а значит и создает широкий спектр помех, который излучается выпрямителем, проводами, идущими к нему от трансформатора и проводами, идущими к конденсатору фильтра. И эти помехи попадают в усилитель и подгружают его высокими частотами (до сотен килогерц). Поэтому некоторые специалисты (например, профессор Никитин) даже советуют подключать выпрямитель к трансформатору через небольшой дроссель, это замедлит процессы отпирания/запирания диодов и снизит помехи.

Мне нечем измерить высокочастотную помеху, вот низкочастотная часть спектра тока диода моего выпрямителя – до 20 кГц.

Рис. 9. Спектр тока диода.

Красная линия – спектр тока непосредственно выпрямителя, а синяя – при включении последовательно с диодом катушки с небольшой индуктивностью, что снижает уровень ВЧ составляющих тока, а как раз именно они хорошо излучаются в эфир в виде помех.

Более быстрое отпирание/запирание "быстрых" диодов даст импульсы тока с более резкими фронтами, а значит и спектр помех, излучаемых выпрямителем, станет более широким. И с этими помехами будет труднее бороться, а попав в усилитель, они сильнее перегрузят его высокими частотами, чем если бы использовать «обыкновенные» диоды. Эта перегрузка на ВЧ (теперь уже до мегагерц) дает интермодуляции с усиливаемым сигналом и вполне может быть заметна на слух как изменение звучания. Например именно таким способом (подмешиванием ультразвуковых сигналов частоты дискретизации) пользовались некоторые изготовители карманых CD плееров. При этом субъективно увеличивалось количество высоких частот и такую "фичу" даже называли что-то типа "живые высокие". Натуральность звука на самом деле при этом уменьшалась.

Но на самом деле, есть своя польза от применения в выпрямителях диодов Шоттки. Дело в том, что прямое падение напряжения на них гораздо меньше, чем на обычных диодах с n-p переходом, а значит потери напряжения в выпрямителе будут меньше и больше напряжения уйдет в питание усилителя. В моем тестовом выпрямителе на обычном диоде при токе 12 А падало 1,2 вольт, а на диоде Шоттки – 0,6 вольт. Значит на диодном мосте в первом случае теряется 2,4 В, а во втором только 1,2 В. Скажете: "Подумаешь мелочь, ерунда 1 вольт!". Не всегда мелочь и ерунда. Если у вас напряжение питания усилителя +-60 вольт, то этот самый 1 вольт действительно ерунда. А если питание +-24 вольта? Давайте посчитаем. Просадка напряжения выпрямителя под нагрузкой порядка 80% от хх. В вольтах это получается 19,2. Падение напряжения на диодах 2,4 вольта. Падение напряжения на выходом каскаде усилителя, допустим, 4 вольта. Значит, на выходе усилителя получаем 19,2 – 2,4 – 4 = 12,8 вольт амплитуды. На синусе, на нагрузке 6 Ом это будет всего лишь 13,6 Вт. Если же использовать диоды Шоттки, то максимальное напряжение на выходе: 19,2 – 1,2 – 4 = 14 В, и синусная мощность уже 16,3 Вт. Чуть-чуть, но больше. Посмотрим на это чуть-чуть повнимательнее.

Музыкальный сигнал имеет импульсную структуру с резкими всплесками:

Рис. 10. Осциллограмма музыкального сигнала.

Большей частью средний уровень сигнала невысокий и легко воспроизводится усилителем. А вот максимальные значения импульсов. В нашем примере если максимальная выходная мощность усилителя 16 Вт (с диодами Шоттки), то он полностью воспроизводит пики сигнала (рис.10). А с обычными диодами, когда выходная мощность 13 Вт, пики обрезаются, как показано на рис. 10 красной линией (ну не хватает мощности для них!). Психоакустика установила, что если эти редкие всплески вот так обрезать, то сознание этого не заметит, то есть мы не будем слышать явных искажений. Но с субьективной стороны при прослушивании мы будем ощущать, что "что-то не то" – отсутствует легкость, воздушность, естественность, прозрачность и прочие "чувственные" части звука. И в таком случае действительно замена обычных диодов на диоды Шоттки существенно улучшает звучание! И именно с той "необъяснимой" субъективной стороны. На самом же деле – никакой мистики, никакого волшебства, чистая физика! Такой вариант событий встречается, на самом деле, довольно часто, и довольно часто применение диодов Шоттки оправдано и технически, и с точки зрения улучшения звучания усилителей.

Выходит, что суперфаст диоды на самом деле в выпрямителе для усилителя и нафиг не нужны и никакой реальной пользы от них нет (зато они более "нежные" и хуже выдерживают перегрузки по току в отличие от "медленных"). А вот диоды Шоттки иногда бывают очень даже полезны, но не быстродействием своим, а низким прямым падением напряжения. Естествено, это справедливо только для "аналоговых" выпрямителей, работающих с частотой сети 50 Гц. Но с другой стороны, если говорить о высококачественных усилителях, то только такие источники питания туда и нужны – импульсные источники и Hi-Fi несовместимы!

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *