0

Защита от бросков напряжения в сети

Содержание

В современных бытовых приборах используется чувствительная электроника, что делает эти устройства уязвимыми перед перепадами напряжения. Поскольку устранить их не представляется возможным, необходима надежная защита. К сожалению, ее организация не входит в сферу обязанностей службы ЖКХ, поэтому заниматься этим вопросом приходится самостоятельно. Благо защитные устройства приобрести сегодня не проблема. Прежде чем перейти к описанию и принципу действия таких приборов, кратко расскажем о причинах, вызывающих скачки напряжения, и их последствиях.

Что такое перепад напряжения и его природа?

Под этим термином подразумевается краткосрочное изменение амплитуды напряжения электросети, с последующим восстановлением, близким к первоначальному уровню. Как правило, длительность такого импульса исчисляется я миллисекундами. Существует несколько причин для его возникновения:

  1. Атмосферные явления в виде грозовых разрядов, они способны вызвать перенапряжение в несколько киловольт, что не только гарантированно выведет электроприборы из строя, а и может стать причиной пожара. В данном случае жителям многоэтажек проще, поскольку организация защиты от таких предсказуемых явлений входит в обязанности поставщиков электричества. Что касается частных домов (особенно с воздушным вводом), то их жильцы должны самостоятельно заниматься этим вопросом или обращаться к специалистам.
  2. Скачки при коммутационных процессах, когда происходит подключение-отключение мощных потребителей.
  3. Электростатическая индукция.
  4. Подключение определенного оборудования (сварка, коллекторный электродвигатель и т.д.).

На рисунке ниже наглядно продемонстрирована величина грозового (Uгр) и коммутационного импульса (Uк) по отношению к номинальному напряжению сети (Uн).

Грозовой и коммутационный импульсы перенапряжения

Для полноты картины следует упомянуть и о долгосрочном повышении и понижении напряжения. Причиной первого является авария на линии, в результате которой происходит обрыв нулевого провода, что вызывает повышение до 380 вольт. Нормализовать ситуации никакими приборами не получится, потребуется ждать устранения аварии.

Длительное снижение напряжения можно часто наблюдать в сельской местности или дачных поселках. Это связано с недостаточной мощностью трансформатора на подстанции.

В чем заключается опасность перепадов?

В соответствии с допустимыми нормами, допускается отклонение от номинала в диапазоне от -10% до +10%. При скачках напряжение может существенно выйти за установленные границы. В результате блоки питания бытовой техники подвергаются перегрузке и могут выйти из строя или существенно сократить свой ресурс. При высоких или длительных перепадах велика вероятность возгорания проводки, и, как следствие, пожара.

Пониженное напряжение также грозит неприятностями, особенно к этому критичны компрессоры холодильных установок, а также многие импульсные блоки питания.

Защитные устройства

Существует несколько видов защитных устройств различающихся как по функциональности, так и по стоимости, одни из них обеспечивают защиту только одному бытовому прибору, другие – всем имеющимся в доме. Перечислим хорошо зарекомендовавшие себя и наиболее распространенные защитные устройства.

Сетевой фильтр

Наиболее простой и доступный по деньгам вариант защиты маломощного бытового оборудования. Отлично зарекомендовал себя при бросках до 400-450 вольт. На более высокие импульсы устройство не рассчитано (в лучшем случае оно примет удар на себя, спасая дорогостоящую аппаратуру).

Фильтр удлинитель Swen Fort Pro

Основной элемент защиты у такого устройства – варистор (полупроводниковый элемент изменяющий сопротивление в зависимости от приложенного напряжения). Именно он выходит из строя при импульсе более 450 В. Вторая важная функция фильтра – защита от высокочастотных помех (возникают при работе электродвигателя, сварки и т.д.) отрицательно влияющих на электронику. Третьим элементом защиты является плавкий предохранитель, срабатывающий при КЗ.

Не следует путать фильтры с обычными удлинителями, которые не обладают защитными функциями, но похожи по внешнему виду. Чтобы различить их достаточно посмотреть паспорт изделия, где приведены полные характеристики. Отсутствие такового должно само по себе вызывать подозрение.

Стабилизатор

В отличие от предыдущего типа приборы этого класса позволяют нормализовать напряжение в соответствии с номинальным. Например, установив границу в пределах 110-250 В, на выходе устройства будет стабильные 220 В. Если напряжение выйдет за пределы допустимого, прибор отключит питание и возобновит его подачу после нормализации работы электросети.

Стабилизатор EDR-1000 от производителя Luxeon

В некоторых случаях (например, в сельской местности) установка стабилизатора является единственным способом повысить напряжение до необходимой нормы. Бытовые стабилизаторы выпускают двух модификаций:

  • Линейные. Они предназначены для подключения одного или нескольких бытовых приборов.
  • Магистральные, устанавливаются на входе электросети здания или квартиры.

И первые, и вторые следует подбирать исходя из мощности нагрузки.

Источники бесперебойного питания

Основное отличие от предыдущего типа является возможность продолжения подачи питания подключенного устройства после срабатывания защиты или полного отключения электричества. Время работы в таком режиме напрямую зависит от емкости аккумуляторной батареи и мощности нагрузки.

Бесперебойный блок питания APC, модель SC-420

В быту эти устройства в основном используются для подключения стационарных компьютеров, чтобы при проблемах с электросетью не потерять данные. При срабатывании защиты ИБП будет продолжать подачу питания в течение определенного времени, как правило, не более получаса (зависит характеристик устройства). Этого времени вполне достаточно, чтобы сохранить необходимые данные и корректно отключить компьютер.

Современные модели ИБП могут самостоятельно управлять работой компьютера через USB интерфейс, например, закрыть текстовый редактор (предварительно сохранив открытые документы), после чего произвести отключение. Это довольно полезная функция, если пользователь при срабатывании защиты не находился рядом.

Устройства защиты от импульсных перенапряжений

Все перечисленные выше приборы обладают общим недостатком, у них не реализована действенная защита от импульса высокого напряжения. Если таковой произойдет, он, практически гарантированно выведет такие устройства из строя. Следовательно, защита должна быть организована таким образом, чтобы после срабатывания можно было оперативно привести ее в рабочее состояние. Этому требованию, как нельзя лучше отвечают УЗИП. На их основе организуется многоуровневая система защиты внутренних линий частного дома.

Одна из принятых классификаций таких устройств показана в таблице.

Таблица 1. Классификация УЗИП

Категория Применение
В (I) Обеспечивают защиту при прямом попадании грозового разряда по системе молниезащиты. Место установки – вводно-распределительное устройство или главный распределительный щит. Основная нормирующая характеристика – величина импульсного тока.
С (II) Защищают токораспределительную сеть от коммутационных импульсов, а также играют роль второго защитного уровня при грозовом разряде. Место установки – распределительный щит.
D (III) Обеспечивают последний уровень защиты, при которой к потребителям не допускаются остаточные броски напряжения и дифференциальные перенапряжения. Помимо этого обеспечивается фильтрация высокочастотных помех. Установка производится перед потребителем. Могут быть выполнены в виде модуля под розетку, удлинителя и т.д.
Читайте также:  Запись с экрана рабочего стола

Пример организации трехуровневой защиты продемонстрирован ниже.

Организация трехуровневой защиты от перенапряжения

Конструктивные особенности УЗИП.

Устройство представляет собой платформу (С на рис. 6) со сменным модулем (В), внутри которого находятся варисторы. При их выходе из строя индикатор (А) изменит цвет (в приведенной на рисунке модели на красный).

УЗИП Finder (категория II)

Внешне устройство напоминает автоматический выключатель, крепление – такое же (под DIN рейку).

Особенностью УЗИП является необходимость замены модулей при выходе варисторов из строя (что довольно просто). Конструкция модулей выполнена таким образом, что установить их на платформу с другим номиналом невозможно. Единственный серьезный недостаток связан с характерными особенностями варисторов. Им необходимо время, чтобы остыть, многократное попадание грозового разряда существенно усложняет этот процесс.

Защитное реле

В завершении рассмотрим реле контроля напряжения (РКН), эти устройства способны обеспечить защиту бытовых приборов от коммутационных импульсов, перекоса фаз, а также пониженного напряжения. С грозовыми импульсами они не справятся, поскольку на это не рассчитаны. Их сфера применения – защита внутренней сети квартиры, то есть там, где обеспечение грозозащиты входит в обязанности электрокомпаний.

Приборы могут устанавливаться во входном щитке, непосредственно, после электросчетчика, для этого предусмотрено крепление под DIN рейку.

РКН можно подключать после счетчика

Помимо этого выпускаются модификации приборов в виде удлинителей питания и модулей под розетку.

Предостережения

Не следует доверять защиту своего дома самодельным конструкциям, в бытовых условиях бывает проблематично настроить собранную схему и протестировать ее работу в критических режимах.

Не имея практического опыта в организации грозозащиты, не стоит пытаться реализовать ее самостоятельно, эту работу лучше доверить профессионалам. Рекомендуем рассматривать эту часть статьи как информационную.

Все манипуляции с электрощитом, приборами и проводкой необходимо проводить только при отключенном электропитании.

В современных бытовых приборах используется чувствительная электроника, что делает эти устройства уязвимыми перед перепадами напряжения. Поскольку устранить их не представляется возможным, необходима надежная защита. К сожалению, ее организация не входит в сферу обязанностей службы ЖКХ, поэтому заниматься этим вопросом приходится самостоятельно. Благо защитные устройства приобрести сегодня не проблема. Прежде чем перейти к описанию и принципу действия таких приборов, кратко расскажем о причинах, вызывающих скачки напряжения, и их последствиях.

Что такое перепад напряжения и его природа?

Под этим термином подразумевается краткосрочное изменение амплитуды напряжения электросети, с последующим восстановлением, близким к первоначальному уровню. Как правило, длительность такого импульса исчисляется я миллисекундами. Существует несколько причин для его возникновения:

  1. Атмосферные явления в виде грозовых разрядов, они способны вызвать перенапряжение в несколько киловольт, что не только гарантированно выведет электроприборы из строя, а и может стать причиной пожара. В данном случае жителям многоэтажек проще, поскольку организация защиты от таких предсказуемых явлений входит в обязанности поставщиков электричества. Что касается частных домов (особенно с воздушным вводом), то их жильцы должны самостоятельно заниматься этим вопросом или обращаться к специалистам.
  2. Скачки при коммутационных процессах, когда происходит подключение-отключение мощных потребителей.
  3. Электростатическая индукция.
  4. Подключение определенного оборудования (сварка, коллекторный электродвигатель и т.д.).

На рисунке ниже наглядно продемонстрирована величина грозового (Uгр) и коммутационного импульса (Uк) по отношению к номинальному напряжению сети (Uн).

Грозовой и коммутационный импульсы перенапряжения

Для полноты картины следует упомянуть и о долгосрочном повышении и понижении напряжения. Причиной первого является авария на линии, в результате которой происходит обрыв нулевого провода, что вызывает повышение до 380 вольт. Нормализовать ситуации никакими приборами не получится, потребуется ждать устранения аварии.

Длительное снижение напряжения можно часто наблюдать в сельской местности или дачных поселках. Это связано с недостаточной мощностью трансформатора на подстанции.

В чем заключается опасность перепадов?

В соответствии с допустимыми нормами, допускается отклонение от номинала в диапазоне от -10% до +10%. При скачках напряжение может существенно выйти за установленные границы. В результате блоки питания бытовой техники подвергаются перегрузке и могут выйти из строя или существенно сократить свой ресурс. При высоких или длительных перепадах велика вероятность возгорания проводки, и, как следствие, пожара.

Пониженное напряжение также грозит неприятностями, особенно к этому критичны компрессоры холодильных установок, а также многие импульсные блоки питания.

Защитные устройства

Существует несколько видов защитных устройств различающихся как по функциональности, так и по стоимости, одни из них обеспечивают защиту только одному бытовому прибору, другие – всем имеющимся в доме. Перечислим хорошо зарекомендовавшие себя и наиболее распространенные защитные устройства.

Сетевой фильтр

Наиболее простой и доступный по деньгам вариант защиты маломощного бытового оборудования. Отлично зарекомендовал себя при бросках до 400-450 вольт. На более высокие импульсы устройство не рассчитано (в лучшем случае оно примет удар на себя, спасая дорогостоящую аппаратуру).

Фильтр удлинитель Swen Fort Pro

Основной элемент защиты у такого устройства – варистор (полупроводниковый элемент изменяющий сопротивление в зависимости от приложенного напряжения). Именно он выходит из строя при импульсе более 450 В. Вторая важная функция фильтра – защита от высокочастотных помех (возникают при работе электродвигателя, сварки и т.д.) отрицательно влияющих на электронику. Третьим элементом защиты является плавкий предохранитель, срабатывающий при КЗ.

Не следует путать фильтры с обычными удлинителями, которые не обладают защитными функциями, но похожи по внешнему виду. Чтобы различить их достаточно посмотреть паспорт изделия, где приведены полные характеристики. Отсутствие такового должно само по себе вызывать подозрение.

Стабилизатор

В отличие от предыдущего типа приборы этого класса позволяют нормализовать напряжение в соответствии с номинальным. Например, установив границу в пределах 110-250 В, на выходе устройства будет стабильные 220 В. Если напряжение выйдет за пределы допустимого, прибор отключит питание и возобновит его подачу после нормализации работы электросети.

Стабилизатор EDR-1000 от производителя Luxeon

В некоторых случаях (например, в сельской местности) установка стабилизатора является единственным способом повысить напряжение до необходимой нормы. Бытовые стабилизаторы выпускают двух модификаций:

  • Линейные. Они предназначены для подключения одного или нескольких бытовых приборов.
  • Магистральные, устанавливаются на входе электросети здания или квартиры.

И первые, и вторые следует подбирать исходя из мощности нагрузки.

Источники бесперебойного питания

Основное отличие от предыдущего типа является возможность продолжения подачи питания подключенного устройства после срабатывания защиты или полного отключения электричества. Время работы в таком режиме напрямую зависит от емкости аккумуляторной батареи и мощности нагрузки.

Читайте также:  Генетика лженаука в ссср

Бесперебойный блок питания APC, модель SC-420

В быту эти устройства в основном используются для подключения стационарных компьютеров, чтобы при проблемах с электросетью не потерять данные. При срабатывании защиты ИБП будет продолжать подачу питания в течение определенного времени, как правило, не более получаса (зависит характеристик устройства). Этого времени вполне достаточно, чтобы сохранить необходимые данные и корректно отключить компьютер.

Современные модели ИБП могут самостоятельно управлять работой компьютера через USB интерфейс, например, закрыть текстовый редактор (предварительно сохранив открытые документы), после чего произвести отключение. Это довольно полезная функция, если пользователь при срабатывании защиты не находился рядом.

Устройства защиты от импульсных перенапряжений

Все перечисленные выше приборы обладают общим недостатком, у них не реализована действенная защита от импульса высокого напряжения. Если таковой произойдет, он, практически гарантированно выведет такие устройства из строя. Следовательно, защита должна быть организована таким образом, чтобы после срабатывания можно было оперативно привести ее в рабочее состояние. Этому требованию, как нельзя лучше отвечают УЗИП. На их основе организуется многоуровневая система защиты внутренних линий частного дома.

Одна из принятых классификаций таких устройств показана в таблице.

Таблица 1. Классификация УЗИП

Категория Применение
В (I) Обеспечивают защиту при прямом попадании грозового разряда по системе молниезащиты. Место установки – вводно-распределительное устройство или главный распределительный щит. Основная нормирующая характеристика – величина импульсного тока.
С (II) Защищают токораспределительную сеть от коммутационных импульсов, а также играют роль второго защитного уровня при грозовом разряде. Место установки – распределительный щит.
D (III) Обеспечивают последний уровень защиты, при которой к потребителям не допускаются остаточные броски напряжения и дифференциальные перенапряжения. Помимо этого обеспечивается фильтрация высокочастотных помех. Установка производится перед потребителем. Могут быть выполнены в виде модуля под розетку, удлинителя и т.д.

Пример организации трехуровневой защиты продемонстрирован ниже.

Организация трехуровневой защиты от перенапряжения

Конструктивные особенности УЗИП.

Устройство представляет собой платформу (С на рис. 6) со сменным модулем (В), внутри которого находятся варисторы. При их выходе из строя индикатор (А) изменит цвет (в приведенной на рисунке модели на красный).

УЗИП Finder (категория II)

Внешне устройство напоминает автоматический выключатель, крепление – такое же (под DIN рейку).

Особенностью УЗИП является необходимость замены модулей при выходе варисторов из строя (что довольно просто). Конструкция модулей выполнена таким образом, что установить их на платформу с другим номиналом невозможно. Единственный серьезный недостаток связан с характерными особенностями варисторов. Им необходимо время, чтобы остыть, многократное попадание грозового разряда существенно усложняет этот процесс.

Защитное реле

В завершении рассмотрим реле контроля напряжения (РКН), эти устройства способны обеспечить защиту бытовых приборов от коммутационных импульсов, перекоса фаз, а также пониженного напряжения. С грозовыми импульсами они не справятся, поскольку на это не рассчитаны. Их сфера применения – защита внутренней сети квартиры, то есть там, где обеспечение грозозащиты входит в обязанности электрокомпаний.

Приборы могут устанавливаться во входном щитке, непосредственно, после электросчетчика, для этого предусмотрено крепление под DIN рейку.

РКН можно подключать после счетчика

Помимо этого выпускаются модификации приборов в виде удлинителей питания и модулей под розетку.

Предостережения

Не следует доверять защиту своего дома самодельным конструкциям, в бытовых условиях бывает проблематично настроить собранную схему и протестировать ее работу в критических режимах.

Не имея практического опыта в организации грозозащиты, не стоит пытаться реализовать ее самостоятельно, эту работу лучше доверить профессионалам. Рекомендуем рассматривать эту часть статьи как информационную.

Все манипуляции с электрощитом, приборами и проводкой необходимо проводить только при отключенном электропитании.

В конструкцию всех современных бытовых приборов входят чувствительные электронные компоненты. В результате, несмотря на все положительные качества и высокие технические характеристики, данное оборудование крайне отрицательно реагирует на перепады напряжения. Подобные скачки присутствуют во всех электрических сетях и полностью устранить их практически невозможно. Поэтому, чтобы сберечь дорогостоящую технику, требуется устройство защиты от перенапряжения.

Причины возникновения и опасность скачков напряжения

В момент перепада напряжения в электрических сетях его амплитуда изменяется на короткий промежуток времени. После этого она быстро восстанавливается с параметрами, приближенными к начальному уровню.

Подобный импульс электрическим током продолжается буквально в течение нескольких миллисекунд, а его возникновение обусловлено следующими причинами:

  • Грозовые разряды. Вызывают скачки напряжения до нескольких киловольт, которые не сможет выдержать ни один прибор. Подобные перепады нередко становятся причиной отключения сети и пожара.
  • Перенапряжение, вызываемое процессами коммутации, когда подключаются или отключаются потребители с высокой мощностью.
  • Явление электростатической индукции при подключении электросварки, коллекторного электродвигателя и другого аналогичного оборудования.

Опасность последствий от перенапряжений наглядно отражается на рисунке, где грозовой и коммутационный импульсы существенно отличаются от номинального сетевого напряжения. Изоляционный слой в большинстве проводов рассчитан на значительные перепады и пробоев обычно не случается. Часто импульс действует очень недолго и напряжение, проходя через блок питания и стабилизатор, просто не успевает подняться до критического уровня.

Иногда слой изоляции сети 220 В может не выдержать возрастающего напряжения. В результате случается пробой, сопровождающийся появлением электрической дуги. Для потока электронов образуется свободный путь в виде микротрещин, а проводником служат газы, наполняющие микроскопические пустоты. Этот процесс сопровождается выделением большого количества тепла, под действием которого токопроводящий канал расширяется еще больше. Из-за постепенного нарастания тока, срабатывание защитной автоматики немного запаздывает, и этих нескольких мгновений вполне хватает, чтобы вывести из строя в частном доме всю электропроводку.

Особую опасность представляют повышенное и пониженное напряжение, находящееся в таком состоянии долгое время. В основном это происходит по причине аварийных ситуаций, которые требуется устранить, чтобы ток пришел в норму. Других способов нормализации и каких-либо специальных приборов, защищающих от этого явления, не существует.

Длительные перенапряжения и провалы из-за недостатка напряжения

Как правило, причиной длительных перенапряжений в сетях становится обрыв нулевого провода. В этом случае нагрузка на фазные жилы распределяется неравномерно, что приводит к перекосу фаз, когда разность потенциалов смещается к проводнику с максимальной нагрузкой.

Таким образом, неравномерный трехфазный ток, воздействуя на нулевой кабель, находящийся без заземления, способствует концентрации на нем избыточного напряжения. Этот процесс будет продолжаться до полного устранения неисправности или до тех пор, пока линия окончательно не выйдет из строя.

Другим опасным состоянием сети является провал или недостаток напряжения. Подобные ситуации очень часто возникают в сельской местности. Суть явления заключается в падении напряжения ниже допустимой величины. Такие проседания представляют серьезную опасность и реальную угрозу для оборудования. Многие современные приборы оборудованы несколькими блоками питания и недостаточное напряжение приводит к кратковременному выключению одного из них.

Читайте также:  Игры написанные на unity

В результате, последует незамедлительная реакция электронной аппаратуры в виде ошибки, выведенной на дисплей, и полной остановки рабочего процесса. Если подобная ситуация сложилась с отопительным котлом в зимнее время года, тогда отопление дома будет прекращено. Устранить проблему возможно с помощью стабилизатора, фиксирующего такие проседания и поднимающего напряжение до номинальной величины.

Виды и принцип действия защитных устройств

Защита электрической сети от скачков напряжения может осуществляться разными способами. Наиболее распространенными и эффективными считаются следующие:

  • Молниезащитные системы.
  • Стабилизаторы напряжения.
  • Датчики повышенного напряжения, используемые совместно с УЗО. В случае неполадок они вызывают токовую утечку, под влиянием которой произойдет срабатывание защитного устройства.
  • Реле перенапряжения.

Похожие функции выполняют блоки бесперебойного питания, с помощью которых компьютеры подключаются к домашней сети. Данные приборы не защищают от перенапряжений, они действуют как аккумуляторы, позволяя выполнить нормальное выключение компьютера и сохранить нужную информацию в случае внезапного отключения света. Стабилизировать напряжение это устройство не может.

Под действием молнии возникают электрические импульсы. Защита от их негативного воздействия осуществляется путем установки грозозащитного разрядника, используемого совместно с УЗИП – устройством защиты от импульсных перенапряжений. Он также известен, как автомат для защиты от перенапряжения. Кроме того, необходимо обеспечить дополнительную безопасность от электронного потока с параметрами, отличающимися от рабочих характеристик данной сети. Для этих целей используются специальные датчики, используемые с УЗО, и реле защиты от перенапряжения. Назначение и принцип работы данных устройств не такие, как у стабилизатора.

Основной функцией обоих компонентов является прекращение подачи электрического тока, когда перепад напряжения превысит максимальное значение, определенное паспортными техническими показателями этих устройств. После того как параметры сети нормализуются, реле включается самостоятельно и возобновляет подачу тока.

Молниезащита от перенапряжений

Защитные системы против грозовых разрядов могут быть устроены разными способами, в зависимости от технических условий.

1.

Первый вариант предполагает внешнюю молниезащиту, устанавливаемую дома (рис. 1). В этом случае допускается максимальная сила удара молнии непосредственно в элементы самой системы. Расчетная величина такого тока составит примерно 100 кА. Защититься от мощного импульса при перегрузке возможно с помощью комбинированного УЗИП, который устанавливается внутрь вводного электрического щита и действует как выключатель. Одно такое устройство защитит все оборудование, находящееся в доме.

В другом случае внешняя молниезащита отсутствует, а напряжение подается к дому по воздушной линии (рис. 2). Молния ударяет в опору ЛЭП с расчетным током, проходящим через УЗИП, величиной тоже 100 кА. Защитить электрооборудование от мощного импульса помогут специальные устройства с защитой, размещаемые во вводном щите, на стене здания или на самом столбе, в месте ответвления линии. При использовании распределительного щита, защита организуется по такой же схеме, как и в предыдущем варианте.

2.

Если же УЗИП устанавливается на столбе, то нецелесообразно применять дифференциальные устройства 3 в 1, поскольку на участке от столба до здания возможно появление наведенных, то есть, повторных перенапряжений. Поэтому будет вполне достаточно прибора класса 1+2, а при расстоянии до дома свыше 60 метров, внутри дома в главный щит дополнительно устанавливается УЗИП 2-го класса.

И, наконец, третья ситуация, когда питание дома подается через подземный кабель, в том числе и в сети 380 В, а внешняя молниезащита тоже отсутствует (рис. 3). Максимум, что может случиться – появление наведенных импульсных перенапряжений. Ток молнии не попадет в сеть даже частично. Величина расчетного импульсного тока составляет около 40 кА. Чтобы защитить электрооборудование достаточно УЗИП 2-го класса, установленного во вводный электрический щит.

3.

Ограничители перенапряжений

Рассматривая вопросы защиты от перенапряжения сети, следует отметить, что данную функцию в первую очередь должны выполнять организации, отвечающие за электроснабжение. Именно они устанавливают на ЛЭП необходимые защитные устройства. Однако, как показывает практика, это выполняется далеко не всегда, и проблемы защиты дома от перенапряжений вынуждены решать сами потребители.

Защита от перенапряжения в сети на подстанциях и воздушных ЛЭП осуществляется с помощью ОПН – нелинейных ограничителей перенапряжения. Основной этих устройств является варистор, имеющий нелинейные характеристики. Его нелинейность состоит в изменяющемся сопротивлении элемента в соответствии с величиной приложенного напряжения.

Когда электрическая сеть работает в нормальном режиме, а напряжение имеет свое номинальное значение, ограничитель напряжения в это время обладает большим сопротивлением, препятствующим прохождению тока. Если же при ударе молнии возникает импульс перенапряжения, наступает резкое снижение сопротивления варистора до минимального значения и вся энергия импульса уходит в контур заземления, соединенный с ОПН. Таким образом, обеспечивается безопасный уровень напряжения, и все оборудование оказывается надежно защищенным.

Для электрических сетей дома или квартиры существуют компактный блок модульных ограничителей перенапряжений, не занимающих много места в распределительном щитке. Они работают точно так же, как и в линиях электропередачи. Эти приборы подключены к заземляющему контуру или к рабочему заземлению, по которому уходят опасные импульсы.

Другие виды защитных устройств

Существуют и другие варианты защиты от перенапряжения в сети. Они широко применяются в быту и считаются одними из наиболее эффективных средств.

Сетевые фильтры

Отличаются простой конструкцией и доступной стоимостью. Несмотря на свою малую мощность, это устройство вполне способно защитить оборудование при скачках, достигающих 380 вольт и даже 450 вольт. Более высокие импульсы фильтр не выдерживает. Он просто сгорает, сохраняя в целости дорогостоящую электронику.

Данное устройство защиты от перенапряжения оборудуется варистором, играющим ключевую роль в обеспечении защиты. Именно он сгорает при импульсах свыше 450 В. Кроме того, фильтр надежно защищает от помех высокой частоты, возникающих при работе сварки или электродвигателей. Еще одним компонентом служит плавкий предохранитель, срабатывающий при коротких замыканиях.

Стабилизаторы

В отличие от сетевых фильтров, эти устройства позволяют выполнить нормализацию напряжения дома и привести его в соответствие с номиналом. Путем регулировок устанавливаются граничные пределы от 110 до 250 вольт, и на выходе устройства получаются требуемые 220 В. В случае скачков напряжения и выходе его за допустимые пределы, стабилизатор автоматически отключает питание. Подача напряжения возобновляется лишь после приведения сети к нормальному рабочему режиму.

Что лучше сетевой фильтр или стабилизатор напряжения. В определенных условиях, например, за городом или в сельской местности, стабилизаторы являются наиболее эффективной защитой от перенапряжения, выступают в качестве единственного варианта, способного выровнять напряжение до установленных норм.

Все стабилизирующие устройства, используемые в быту, разделяются на два основных типа. Они могут быть линейными, когда к ним подключается один или несколько бытовых приборов, или магистральными, устанавливаемыми на вводе сети в квартире или во всем здании.

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *