0

Звук и акустические системы

Содержание

Кристофер

13 февраля 2004

Выбор акустических систем для дома или студии обычно является несложным процессом. Ключевыми факторами являются: цена, внешнее исполнение и пять-десять характеристик, приведенных в спецификации. Плюс к этому чтение сравнительного обзора в каком-либо издании. На самом деле, все не так и просто.

Базовый принцип построения современных систем звукозаписи и воспроизведения

На современном этапе можно отметить, что тракты звукозаписи и воспроизведения зеркальны не только иерархически, но и технологически. Если бы мы рассматривали микрофоны, как устройства преобразования акустических изменений в изменения аналогового сигнала, то непременно отметили бы, что основные типы этих преобразований – электродинамический и электростатический.

Микрофоны – это первый элемент в тракте звукозаписи, акустические системы – это последний в тракте воспроизведения и в них используются эти же два типа преобразований. Данное подобие можно найти в любых "параллельных" элементах современных звуковых трактов. Например, на аналого-цифровом уровне – это АЦП (аналого-цифровой преобразователь) для записи и ЦАП (цифро-аналоговый преобразователь) для воспроизведения. Конечно, как вы понимаете, существуют и отличия, выраженные в специфике того или иного структурного элемента. Для акустических систем это особенно важно понимать, поскольку именно в них мы сталкиваемся с рядом проблем линейного отображения звукового сигнала в акустическом пространстве, и конструктивно АС сложнее микрофонов.

Основные характеристики АС

Понятие акустических систем подразумевает целый класс устройств, основанных на базе одного или нескольких преобразователей изменения аналогового сигнала в изменения звукового давления (акустические колебания) в воздушной среде. Как это происходит, мы рассмотрим чуть позже на примере нескольких основных типов громкоговорителей, применяемых в современной индустрии.

АС являются последней цепочкой звуковоспроизводящих трактов. Их можно разделить по предназначению (студийные мониторы, головные телефоны (наушники), домашние акустические системы, трансляционные системы и т.п.), способам преобразования (электродинамические, электростатические), по виду излучения (непосредственного излучения и рупорные), по потребляемой электрической мощности, диапазону частот, конструктивным особенностям и так далее.

При этом стоит отметить, что деление АС по предназначению предусматривает наличие более узкой специализации. Например, студийные мониторы бывают ближнего, среднего и дальнего поля, наушники – закрытого и открытого типа, "беруши", и так далее.

АС применяются практически во всех сферах человеческой деятельности, начиная от обычных телевизоров, и заканчивая телефонией. При этом производители всегда следят за соотношением цена/качество, и в зависимости от предназначения выпускаемой продукции применяют различные технологии.

Основные параметры АС и громкоговорителей:

  • Номинальная мощность – электрическая мощность, при которой нелинейные искажения громкоговорителя не превышают требуемые для заданного технологического стандарта.
  • Номинальное сопротивление – активное электрическое сопротивление при заданной мощности.
  • Частотный диапазон устройства.
  • Частотная характеристика по звуковому давлению – зависимость уровня звукового давления от частоты, выраженное в графической либо численной форме.
  • Характеристическая чувствительность – усредненное значение звукового давления, высчитывается для условий: расстояние до громкоговорителя равна 1 м, а приложенная электрическая мощность – 1 Вт.
  • Неравномерность частотной характеристики звукового давления – разность между максимальным и минимальным уровнями звукового давления.
  • Диаграммы направленности для заданных частот или полос – графическое отображение распределение звуковых волн от громкоговорителя в окружающем акустическом пространстве.
  • Коэффициент полезного действия – процентное соотношение приложенной электрической мощности и получаемой акустической на заданной полосе частот.
  • Коэффициэнт нелинейных искажений (THD) – описывает общие гармонические искажения.

Основной задачей электроакустических преобразователей является осуществление максимально линейной зависимости между изменениями электрического сигнала и формируемыми изменениями звукового давления. Но практически все современные модели далеки от идеала и являются нелинейными. Реализация качественной "линейности" стоит очень больших денег.

На графике отображено отличие реальной картины от идеальной.

Электродинамические головки

Современные реализации электродинамических громкоговорителей от разных производителей имеют различные конструктивные особенности. На базе описания стандартной электродинамической головки прямого излучения (рисунок) мы рассмотрим базовые конструктивные особенности этого типа громкоговорителей.

Диффузор представляет из себя отлитую из бумаги или другого специального материала форму в виде конуса с круглым либо эллиптическим основанием, при этом в основании могут использовать и любую другую образующую (прямую, криволинейную). Конусная форма выгодна с точки зрения придания диффузору жесткости. Для реализации качественного воспроизведения очень важно, чтобы диффузор мог смещаться только в одной осевой плоскости.

Со стороны основания диффузор крепится к диффузодержателю с помощью гофрированного верхнего подвеса. Использование последнего очень выгодно, поскольку позволяет качественно увеличить динамический диапазон. Со стороны вершины конус крепится к центрирующей шайбе, которая также обычно сделана из гофрированной бумаги либо картона. Таким образом, получается, что диффузор плотно зажат между гофрированными элементами и может производить смещение только в одной осевой плоскости.

Диффузодержатель несет в себе основополагающие конструктивные особенности. Обычно он выполнен с отверстиями (окнами), что препятствует образованию стоячих волн с тыльной стороны диффузора. Электромагнитная часть не представляет ничего сложного в объяснении процесса электроакустического преобразования. В воздушном зазоре магнитопороводом, состоящим из керна (стержня), кольцевого магнита, верхнего и нижнего фланцев создается постоянный магнитный поток, движущийся в радиальном направлении.

С диффузором соединена звуковая катушка, на которую подается переменное напряжение звуковой частоты. Обычно катушка предусматривает четное количество витков, для того, чтобы оба ее конца находились с одной стороны. По особо гибким проводникам звуковой катушки проходит ток, который взаимодействует с постоянным магнитным полем, в результате чего создается движущая электродинамическая сила, заставляющая смещаться саму катушку и диффузор, скрепленный с нею. Данная сила вычисляется по закону Био-Савара:
F=B*l*I,
где В-индукция в зазоре; l-длина провода звуковой катушки, I – сила тока.

Еще одним важным конструктивным элементом современной электродинамической головки является противопылевой колпачок, который несет в себе сразу несколько функций. Поскольку он может быть выполнен и из акустически непрозрачного жесткого материала (как частный случай), то может быть задействован как высокочастотный излучатель. В этом случае конструкция должна предусматривать в звуковой катушке наличие антикомпрессионных отверстий для предотвращения колебаний диффузора под колпачком при больших амплитудах.

Если говорить о конструктивных особенностях от разных производителей, то стоит отметить, что применяются различные типы катушек, варианты их размещения, наличие радиаторов для отвода тепла и так далее. Помимо этого бывают громкоговорители сразу с двумя диффузорами, прикрепленными к одной и той же звуковой катушке.

Механическое сопротивление электродинамической головки

Подвижная механическая система электродинамической головки заключает в себе совокупность элементов, участвующих в ее движении, среди которых можно перечислить диффузор, звуковую катушку и соколеблющиеся элементы, такие как гофрированный верхний подвес и центрирующая шайба. При этом важными параметрами, определяющими механическое движение, будут массы этих элементов, внутреннее трение, сопротивления излучения диффузора и среды. Эти характеристики непосредственно влияют на КПД громкоговорителя.

Следует отметить, что при больших амплитудах меняются параметры гибкости верхнего подвеса и центрирующей шайбы, что приводит к нелинейным искажениям.

Нелинейные искажения в электродинамических головках

На рисунке показан увеличенный вариант нашего первого рисунка, и теперь мы сможем внимательнее рассмотреть суть происходящих процессов. Совсем не сложно заметить, что в рамках зазора магнитные линии распределены равномерно. Но электродинамическая сила заставляет смещаться звуковую катушку за его границы, тогда некоторые витки этой катушки попадают в более слабое магнитное поле, и в этих участках средняя электродинамическая сила, которую мы вычисляли по закону Био-Савара (F=B*l*I) объективно уменьшится. Эти участки также называют зонами ослабленной индукции. В результате мы получаем изменение формы волны звукового давления. В варианте обычной синусоиды мы получим результат, представленный на графике.

Это еще полбеды, но мы ведь всегда имеем дело со звуковым сигналом, состоящим из множества частот. Расширив данный пример, давайте посмотрим, как будут взаимодействовать низкие и высокие частоты. Примем за внимание тот факт, что для амплитуд низкочастотного сигнала требуется большее смещение звуковой катушки и диффузора, во время которого высокочастотный сигнал будет находиться в зоне ослабленной индукции.

Таким образом, мы получаем своеобразную амплитудную модуляцию (рисунок), в результате которой появляются дополнительные частоты, которых не присутствовало в исходном сигнале.

Появление дополнительных частот предвосхищает появление нелинейных искажений. Для предотвращения этого неприятного явления намотку катушки делают больше зазора, что позволяют сделать изменения средней электродинамической силы менее значительными.

Второй причиной появления нелинейных искажений можно считать формирование изгибов конусной поверхности диффузора. То есть, смещаясь только по одной осевой плоскости конус может выгибаться в две стороны как показано на рисунке.

В результате добавляются частоты, в два раза меньшие, чем частоты исходного сигнала. Объяснить это явление достаточно просто: за один период частоты, конус выгибается в одну из сторон, а потом возвращается в исходное состояние, в следующий период частоты он выгибается в другую сторону и возвращается в исходное состояние. Данная проблема решается, или почти решается, с применением форм диффузоров с криволинейной образующей поверхности конуса.

Ну и третью причину появления нелинейных искажений мы затронули чуть раньше – при больших амплитудах меняются параметры гибкости верхнего подвеса и центрирующей шайбы.

Выводы из вышеизложенного

Как вы смогли увидеть, проблем в обеспечении линейности преобразования характеристик масса, причем мы остановились только на нескольких из них. И каждый производитель пытается решить их самостоятельно с учетом последних разработок в данной области. Причем ноу-хау часто заключается не только в применении определенных конструкций, но и специальных материалов для составных элементов. Возвращаясь к понятию "стандартов" следует отметить, что высокая цена на качественные АС для студийного мониторинга полностью оправдана.

Рупорные громкоговорители

Рупорные громкоговорители появились как вариант увеличения КПД электродинамических громкоговорителей, значение которого у последних обычно составляет 1 – 2% (в некоторых источниках указывается разбежка 0,5 – 5%).

Такой низкий коэффициент объясняется присутствием механического сопротивления в механических элементах и сопротивлением среды.

На этом этапе стоит разделить процессы преобразования в громкоговорителях на два ключевых: (1) преобразование механических колебаний в акустические и (2) излучение колебаний в окружающую среду. В рупорных громкоговорителях электродинамическая головка отвечает за первый процесс, а рупор – за второй. По сути, рупор – эта труба с жесткими стенками и сечением, изменяющимся от минимального до максимального своего значения по определенному закону (чаще всего по экспоненте). Эквивалентом излучателя в данном случае является слой воздуха в выходном отверстии, сечение которого можно сделать достаточно большим.

Помимо этого в конструкциях рупоров предусмотрена предрупорная камера, работающая как трансформатор в условиях, когда сечение поверхности диафрагмы Sд больше, чем входное сечение рупора So. Таким образом, коэффициент трансформации равен отношению Sд/So и всегда является большим единицы. КПД таких громкоговорителей достигает 15-20%, что гораздо лучше, чем у электродинамических головок (1 – 2%). Данный тип рупорных громкоговорителей называется узкогорлыми.

Помимо этого, существуют громкоговорители без предрупорной камеры, где Sд равен или близко равен So. Данный тип рупорных громкоговорителей называется широкогорлыми. Соответственно КПД у них находится в среднем диапазоне – 7 – 10%.

Рупорные громкоговорители могут применяться в качестве составных элементов для многополосных АС.

Электростатические громкоговорители

Открыв любое советское или постсоветское издание по этой теме вы можете столкнуться с подобным определением: "электростатические громкоговорители разделяются на три основных типа: конденсаторные, электретные и пьезоэлектрические". Так ли это?

Конденсаторные… это название весьма условно, поскольку все преобразователи из данного раздела используют принцип преобразования звукового напряжения в изменения положения движущегося электрода в условиях заданной емкости. Поэтому разделение такого плана весьма условно и описывает лишь способ достижения заданной цели, а не некий глобальный принцип.

Суть конденсаторных электроакустических преобразователей, описанных в данной литературе и долгое время использующихся на практике, заключается в следующем: мы имеем в наличие две обкладки конденсатора – неподвижную массивную (ребристая полуцилиндрическая металлическая поверхность) и гибкую (пленка с нанесенным металлическим слоем с наружной стороны либо металлическая фольга с диэлектриком с внутренней стороны).

Пленка одевается на полуцилиндр как чулок, а натягивающий винт (или система винтов с гайкой) позволяет оптимально отрегулировать первоначальное механическое натяжение пленки.

Вся приведенная система в рабочем виде представляет собой конденсатор, на обкладки которого подается два напряжения. Первое Uo задает начальное натяжение пленки. При подаче дополнительного переменного звукового напряжения U

, емкость конденсатора будет постоянно меняться и пленка будет натягиваться то сильнее, то слабее.

Конденсаторные громкоговорители обладают очень хорошей характеристикой линейности, но имеется небольшая тонкость – чем больше емкость, тем лучше эффективность излучения низких частот. А емкость находится в прямой зависимости от размера обкладок данного конденсатора. Реализация больших размеров обкладок затруднительна, поэтому конденсаторные громкоговорители в таком виде применяются в качестве высокочастотных составляющих акустических систем (от 5-7 КГц до 20 КГц).

Электретные громкоговорители схожи по структуре с обычными конденсаторными, за исключением того, что в них используется уже заранее наэлектризованная пленка (электретная пленка). Они имеют такие же характеристики как и в первом случае, за исключением того, что наэлектризованность пленки со временем уменьшается и требуется ее замена либо повторная поляризация.

Пьезоэлектрические громкоговорители имеют несколько другой принцип работы. В них используются пластины, изготовленные из специального материала (сегнетовой соли или пьезокерамики). Край такой пластины скрепляется с диффузором, электромеханическое преобразование происходит также как и в конденсаторных громкоговорителях, и параметры этого преобразования для обоих случаев идентичны. Но на этом положительные стороны заканчиваются… имеются большое количество нелинейных искажений и значительная неравномерность АЧХ. Используемые материалы также обладают недостатками, например, пьезокерамика имеет низкую чувствительность, а сегнетовая соль чувствительна к климатическим условиям и воздействиям внешней среды. Это несомненно ограничивает использование пьезоэлектрических громкоговорителей на практике.

Электростатические громкоговорители-2

Мы живем в 2004 году, и изложенное в предыдущем разделе уже вошло практически во все книги, описывающие основные устройства воспроизведения. Но сегодня применяется очень много и других способов реализации электростатических громкоговорителей, часть из которых прячется за закрытыми патентами и ноу-хау. Например, сейчас под электростатическими громкоговорителями часто подразумевают технологии, основанные на взаимодействии статических зарядов, описать которые можно следующим образом. В качестве мембраны в таких устройствах используется очень тонкая полимерная пленка (10-15 микрон) с нанесенным проводящим слоем. Масса этой пленки соизмерима с массой колеблющегося воздуха, а следовательно мембрана обладает предельно малой инерционностью, что позволяет системе очень точно передавать широкий (!) диапазон частот с минимумом искажений. Полимерная пленка натянута между двумя перфорированными пластинами, на которые через трансформатор от усилителя подается звуковой сигнал. На проводящий слой мембраны подается напряжение порядка нескольких кВ. В результате взаимодействия заряда на пленке и звукового напряжения мембрана начинает двигаться со звуковой частотой.

У данной технологии уже есть много вариаций от различных разработчиков. В качестве примера приведем продукцию голландской компании Final.

Этой статьей мы начнем цикл материалов о конструкции акустических систем, их свойствах и важных характеристиках, в которых стоит разобраться тому, кто решил, как минимум, обдуманно купить себе колонки или же хочет подробнее изучить, почему все работает именно так, а не иначе. Цикл рассчитан на новичков в мире аудио, но будет полезен и тем, кто уже все знает, чтобы освежить свои знания или написать свое мнение в комментариях. Итак, начнем мы, однако, не с акустики, а со звука, потому что единственная задача акустики — создать звук.

Что такое звук?

В учебнике сказано: «Колебательные движения частиц, которое распространяется в виде волн в газообразной, жидкой или твердой средах». Давайте отбросим лишнее и поговорим только о слышимом звуке (кроме него ведь еще существуют ультразвук, инфразвук и т.д.).

Звук — это, на самом деле, не движение воздуха (газа) в пространстве, а волновые, периодические изменения давления этого самого газа. Звук является волновым излучением, подчиняется соответствующим физическим законам, которые описывают его распространение и взаимодействия. Согласно этим законам мы можем описать звук по нескольким характеристикам. Возьмем основные: частота, амплитуда (форма колебаний) и скорость.

Что такое частота звука?

Частота — это количество колебаний за единицу времени. Конкретней — число колебаний в секунду. Измеряется в герцах. Одно колебание в секунду — один герц (Гц). Если еще вспомнить, что звук распространяется в воздухе со скоростью около 350 метров в секунду или около 1250 км/ч, то достаточно легко понять, что частота и скорость связаны между собой. И эта связь дает нам возможность определить длину звуковой волны: чем больше частота, тем меньше длина волны — и наоборот.

Почти традиционно считается, что человеческий слух позволяет услышать диапазон частот «20–20» — от 20 Гц до 20 кГц, другими словами, от 20 колебаний в секунду до 20 000.

Не все частоты одинаково громкие

При этом матушка-природа наделила нас с вами достаточно избирательным слухом. Психоакустические исследования показывают, что лучше всего человек слышит самое для себя важное — человеческую речь. Эти звуки располагаются в диапазоне частот в районе 3000 Гц. Где-то в этом районе и находится максимальная чувствительность наших с вами ушей.

На других частотах она уменьшается, изменяясь в виде плавных кривых. Эти кривые показывают, с какой громкостью человек воспринимает звуковые колебания равной амплитуды. Эти данные важны не только для расчета акустических систем, но и для правильного понимания природы восприятия звука.

Они были получены статистическим способом, когда в субъективном оценивании громкости звучания на разных частотах принимало участие большое количество людей. В честь авторов этой научной разработки линии равной громкости называются кривыми Флетчера-Мэнсона.

Как мы понимаем, откуда пришел звук

Ответ простой: потому, что у нас есть голова и два уха! Если одно ухо вдруг не работает, это можно частично компенсировать быстрым поворотом головы. Слух при наличии двух ушей называется бинауральным. Он позволяет нам локализовать источник звука.

Это происходит потому, что звук приходит к правому и левому уху с небольшой задержкой или, если выразиться точнее, со сдвигом по фазе. Так как длина звуковой волны достаточно большая, в оба уха обычно поступает одна волна, но разные ее участки — фазы.

Этот сдвиг анализируется нашим мозгом, легкий поворот головы — и мы уже готовы приблизительно указать на какой ветке сидит птица, хотя разглядеть ее все равно не получится.

И чем выше звук, то есть, чем больше его частота, тем легче определить направление на его источник — сильнее проявляется фазовый сдвиг. А вот на низких частотах длина волны становится больше, чем расстояние между ушами, поэтому определить источник звука гораздо сложнее.

Почему одни звуки красивые, а другие нет?

Здесь почему-то тянет взять серый том Фейнмановских лекций и освежить воспоминания о рядах Фурье — но будем проще: любое колебание можно разложить на несколько колебаний с меньшей длиной волн. Эти меньшие волны — и есть гармоники, и сколько их укладывается в длине основной волны — две, три и т.д. — определяет их четность или нечетность. Как оказалось, нечетные гармоники воспринимаются нашим слухом дискомфортно. Причем вроде все играет правильно, но дискомфорт остается.

Более явный неприятный звук — диссонанс, две частоты, работающие одновременно и вызывающие редкие биения. Если хотите еще наглядней, то нажмите близлежащие черную и белую клавиши на пианино.

Есть и противоположность диссонанса — консонанс. Это сама благозвучность, например, — такой интервал, как октава (удвоение частоты), квинта или кварта. Кроме того, комфортности звучания мешают маскирующие его шумы различной природы, искажения и призвуки.

Ясно, что шум — то, что мешает в принципе. Звуковой мусор. Впрочем, есть и белый шум, этакий эталон шума, в котором присутствуют равномерно все частоты (точнее — спектральные составляющие). Если вы хотите уйти от источника белого шума, то по ходу удаления он будет розоветь. Это происходит потому, что воздух сильнее ослабляет верхние частоты слышимого спектра. Когда их меньше, тогда говорят о розовом шуме.

Чем громче шум по отношению к полезному звуку, тем больше этот звук маскируется шумом. Падает комфортность, а затем — и разборчивость звучания. Это же относится и к нечетным гармоникам, и к нелинейным искажениям, о которых мы еще поговорим более подробно. Все эти явления взаимосвязаны и, самое главное, — все они мешают нам слушать.

Нота — высота звука и его частота — зависит от специальности

В понимании звука, судя по всему, есть две крайности — понимание звукоинженера и музыканта. Первый говорит «440 Гц!» второй — «нота Ля!». И оба правы. Первый говорит «частота», второй — «высота звука». Впрочем, известно немало отличных музыкантов, которые вовсе не знали нот. При этом специалистов в области акустики, не знающих физических основ в этой области, еще никому не удавалось встретить.

Важно понимать, что оба этих специалиста по-своему занимаются комфортным звучанием. Автор музыкального произведения, инстинктивно, или опираясь на консерваторские знания, строит звук на принципах гармонии, не допуская диссонансов или искажений. Конструктор, создающий колонки, изначально не допускает посторонних призвуков, минимизирует искажения, заботится о равномерности амплитудно-частотной характеристики, динамике и многом, многом другом.

Громкость, звуковое давление — пределы и ориентиры

С громкостью все не так просто. Она относительна. Подумайте сами, ведь абсолютной тишины не существует. То есть, она в природе есть, но попадание в такое место превращается в пытку — вы начинаете слышать стук своего сердца, звон в ушах — все равно тишина исчезает.

Поэтому звуковое давление измеряется относительно некоего нулевого уровня в децибелах (дБ). Это логарифмические единицы, ведь логарифмическая шкала наиболее точно соответствует природе слуха. Если немного углубиться в теорию, нужно вспомнить эмпирически установленный закон психофизиологии Вебера-Фехнера, который описывает работу органов чувств. Согласно этому закону, интенсивность ощущения чего-либо прямо пропорциональна логарифму интенсивности раздражителя. В случае звука, это — амплитуда (размах) колебаний.

И если за ноль децибел принять порог слышимости (а это, повторимся, не тишина!), то шелест листьев дает 10 дБ, поезд метро — 100 дБ, истребитель на форсаже — 125 дБ, и ненамного меньше, кстати, выдала одна девчушка, призер соревнований по громкости крика в США. В дискотечном зале громкость может достигать 130 дБ. Это при том, что 120 дБ — уже больно, а 180 — могут убить.

Разница приблизительно в шесть децибел воспринимается нами, как удвоение громкости. Добавление трех децибел на низкой частоте требует удвоения амплитуды колебаний источника звука, но на слух это замечает не каждый слушатель! Такие вот парадоксальные, на первый взгляд, данные.

Поведение звука

Оно всегда предсказуемо, если вооружиться определенными знаниями. Звук может отражаться от поверхности, поглощаться ею, проникать сквозь нее. При этом каждый вариант — лишь частичный. Отражение звука приводит к эффекту эхо, звукоинженеры еще называют его реверберацией. Это сложный процесс. В любой комнате есть своя реверберация, многократная, по-своему затухающая, с определенными частотными характеристиками. Затухающая потому, что часть звука все-таки поглощается стенами.

Но если звук сделать громче, то, в зависимости от выбранного звукового давления, через некоторое время (оно линейно зависит от громкости в дБ) в стену начнут стучать соседи. Это значит, мы выяснили, что часть звука проходит сквозь стену. Правильное соотношение всех этих свойств — очень важный параметр для комфортного звучания.

Та же реверберация должна быть оптимальной. Если ее практически нет, говорят, что комната переглушена. Если ее слишком много — вы слышали такое на вокзале, — страдает разборчивость звука. Существуют определенные критерии для правильной акустической обстановки, о них мы писали, например, в этой статье.

Еще один источник аудионегатива — резонирующие объекты. Скажем, хрусталь в стеклянном шкафу. И когда все эти факторы приведены в норму — поздравляю, мы с вами находимся в акустически комфортном помещении!

В таком помещении особенно хорошо звучит качественное аудиовоспроизводящее оборудование и его главная составляющая часть — акустические системы.

  • О проекте «Кристальный звук»
  • Сравнительное тестирование 2.1-акустики (ноябрь 2015)
  • Сравнительное тестирование активных стереоколонок (декабрь 2014)
  • Сравнительное тестирование активных стереоколонок (июль 2014)
  • Сравнительное тестирование стереоколонок Edifier и Microlab (апрель 2014)
  • Методика тестирования
  • Оборудование
  • Словарь терминов
  • Измерения
  • Награды
  • Мощность

    Под словом мощность в разговорной речи многие подразумевают «мощь», «силу». Поэтому вполне естественно, что покупатели связывают мощность с громкостью: «Чем больше мощность, тем лучше и громче будут звучать колонки». Однако это распространенное мнение в корне ошибочно! Далеко не всегда колонка мощностью 100 Вт будет играть громче или качественней той, у которой указана мощность «всего» в 50 Вт. Значение мощности, скорее, говорит не о громкости, а о механической надежности акустики. Те же 50 или 100 Вт — это совсем не громкость звука, издаваемого колонкой. Динамические головки сами по себе имеют низкий КПД и преобразуют в звуковые колебания лишь 2-3% мощности подводимого к ним электрического сигнала (к счастью, громкости издаваемого звука вполне хватает для создания звукового сопровождения). Величина, которую указывает производитель в паспорте динамика или системы в целом, говорит лишь о том, что при подведении сигнала указанной мощности динамическая головка или акустическая система не выйдет из строя (вследствие критического разогрева и межвиткового КЗ провода, «закусывания» каркаса катушки, разрыва диффузора, повреждения гибких подвесов системы и т.п.).

    Таким образом, мощность акустической системы — это технический параметр, величина которого не имеет прямого отношения к громкости звучания акустики, хотя и связана с ней некоторой зависимостью. Номинальные значения мощности динамических головок, усилительного тракта, акустической системы могут быть разными. Указываются они, скорее, для ориентировки и оптимального сопряжения между компонентами. Например, усилитель значительно меньшей или значительно большей мощности может вывести колонку из строя в максимальных положениях регулятора громкости на обоих усилителях: на первом — благодаря высокому уровню искажений, на втором — благодаря нештатному режиму работы колонки.

    Мощность может измеряться различными способами и в различных тестовых условиях. Существуют общепринятые стандарты этих измерений. Рассмотрим подробнее некоторые из них, наиболее часто употребляемые в характеристиках изделий западных фирм:

    RMS ( Rated Maximum Sinusoidal power — установленная максимальная синусоидальная мощность). Мощность измеряется подачей синусоидального сигнала частотой 1000 Гц до достижения определенного уровня нелинейных искажений. Обычно в паспорте на изделие пишется так: 15 Вт (RMS). Эта величина говорит, что акустическая система при подведении к ней сигнала мощностью 15 Вт может работать длительное время без механических повреждений динамических головок. Для мультимедийной акустики завышенные по сравнению с Hi-Fi колонками значения мощности в Вт (RMS) получаются вследствие измерения при очень высоких гармонических искажениях, часто до 10%. При таких искажениях слушать звуковое сопровождение практически невозможно из-за сильных хрипов и призвуков в динамической головке и корпусе колонки.

    PMPO (Peak Music Power Output — пиковая музыкальная мощность). В данном случае мощность измеряется подачей кратковременного синусоидального сигнала длительностью менее 1 секунды и частотой ниже 250 Гц (обычно 100 Гц). При этом не учитывается уровень нелинейных искажений. Например, мощность колонки равна 500 Вт (PMPO). Этот факт говорит, что акустическая система после воспроизведения кратковременного сигнала низкой частоты не имела механических повреждений динамических головок. В народе единицы измерения мощности Вт (PMPO) называют «китайскими ваттами» из-за того, что величины мощности при такой методике измерения достигают тысячи Ватт! Представьте себе — активные колонки для компьютера потребляют из сети переменного тока электрическую мощность 10 В*А и развивают при этом пиковую музыкальную мощность 1500 Вт (PMPO).

    Наравне с западными существуют также советские стандарты на различные виды мощности. Они регламентируются действующими по сей день ГОСТ 16122-87 и ГОСТ 23262-88. Эти стандарты определяют такие понятия, как номинальная, максимальная шумовая, максимальная синусоидальная, максимальная долговременная, максимальная кратковременная мощности. Некоторые из них указываются в паспорте на советскую (и постсоветскую) аппаратуру. В мировой практике эти стандарты, естественно, не используются, поэтому мы не будем на них останавливаться.

    Делаем выводы: наиболее важным на практике является значение мощности, указанной в Вт (RMS) при значениях коэффициента гармоник (THD), равного 1% и менее. Однако сравнение изделий даже по этому показателю очень приблизительно и может не иметь ничего общего с реальностью, ведь громкость звука характеризуется уровнем звукового давления. Поэтому информативность показателя «мощность акустической системы» — нулевая.

    Чувствительность

    Чувствительность — один из параметров, указываемых производителем в характеристике акустических систем. Величина характеризует интенсивность звукового давления, развиваемого колонкой на расстоянии 1 метра при подаче сигнала частотой 1000 Гц и мощностью 1 Вт. Измеряется чувствительность в децибелах (дБ) относительно порога слышимости (нулевой уровень звукового давления равен 2*10^-5 Па). Иногда используется обозначение — уровень характеристической чувствительности (SPL, Sound Pressure Level). При этом для краткости в графе с единицами измерений указывается дБ/Вт*м либо дБ/Вт^1/2*м. При этом важно понимать, что чувствительность не является линейным коэффициентом пропорциональности между уровнем звукового давления, мощностью сигнала и расстоянием до источника. Многие фирмы указывают характеристики чувствительности динамических головок, измеренные при нестандартных условиях.

    Чувствительность — характеристика, более важная при проектировании собственных акустических систем. Если вы не осознаете до конца, что означает этот параметр, то при выборе мультимедийной акустики для PC можно не обращать на чувствительность особого внимания (благо указывается она не часто).

    Амплитудно-частотная характеристика (АЧХ) в общем случае представляет собой график, показывающий разницу величин амплитуд выходного и входного сигналов во всем диапазоне воспроизводимых частот. АЧХ измеряют подачей синусоидального сигнала неизменной амплитуды при изменении его частоты. В точке на графике, где частота равна 1000 Гц, принято откладывать на вертикальной оси уровень 0 дБ. Идеален вариант, при котором АЧХ представлена прямой линией, но таких характеристик в реальности у акустических систем не бывает. При рассмотрении графика нужно обратить особое внимание на величину неравномерности. Чем больше величина неравномерности, тем больше частотных искажений тембра в звучании.

    Западные производители предпочитают указывать диапазон воспроизводимых частот, который представляет собой «выжимку» информации из АЧХ: указываются лишь граничные частоты и неравномерность. Допустим, написано: 50 Гц – 16 кГц (±3 дБ). Это значит, что у данной акустической системы в диапазоне 50 Гц – 16 кГц звучание достоверное, а ниже 50 Гц и выше 15 кГц неравномерность резко увеличивается, АЧХ имеет так называемый «завал» (резкий спад характеристики).

    Чем это грозит? Уменьшение уровня низких частот подразумевает потерю сочности, насыщенности звучания басов. Подъем в области НЧ вызывает ощущения бубнения и гудева колонки. В завалах высоких частот звук будет тусклым, неясным. Подъемы ВЧ означают присутствие раздражающих, неприятных шипящих и свистящих призвуков. У мультимедийных колонок величина неравномерности АЧХ обычно выше, чем у так называемой Hi-Fi акустики. Ко всем рекламным заявлениям фирм-производителей об АЧХ колонки типа 20 – 20000 Гц (теоретический предел возможности) нужно относиться с изрядной долей скептицизма. При этом часто не указывается неравномерность АЧХ, которая может составлять при этом немыслимые величины.

    Поскольку производители мультимедийной акустики часто «забывают» указать неравномерность АЧХ акустической системы, встречаясь с характеристикой колонки 20 Гц – 20000 Гц, надо держать ухо востро. Существует большая вероятность купить вещь, не обеспечивающую даже более или менее равномерную характеристику в полосе частот 100 Гц – 10000 Гц. Сравнивать диапазон воспроизводимых частот с разными неравномерностями нельзя вовсе.

    Нелинейные искажения, коэффициент гармоник

    Кг — коэффициент гармонических искажений. Акустическая система представляет собой сложное электроакустическое устройство, которое имеет нелинейную характеристику усиления. Поэтому сигнал по прошествии всего звукового тракта на выходе обязательно будет иметь нелинейные искажения. Одними из самых явных и наиболее простых в измерении являются гармонические искажения.

    Гармонические искажения – это, попросту, такие искажения, которые кратны основному тону сигнала. Паразитные гармоники в спектре придают звучанию новый тембр и ведут к невосполнимым потерям в звуке. Обычно гармонические искажения измеряются подачей синусоидального сигнала частотой 1000 Гц. С помощью специального фильтра в звуковом сигнале находят лишние гармоники и определяют их мощность.

    Коэффициент — величина безразмерная. Указывается либо в процентах, либо в децибелах. Формула пересчета: [дБ] = 20 log ([%]/100). Чем больше величина коэффициента гармоник, тем обычно хуже звучание.

    Кг колонок во многом зависит от мощности подаваемого на них сигнала. Поэтому глупо делать заочные выводы или сравнивать колонки только лишь по коэффициенту гармоник, не прибегая к прослушиванию аппаратуры. К тому же для рабочих положений регулятора громкости (обычно это 30..50%) значение производителями не указывается.

    Полное электрическое сопротивление, импеданс

    Электродинамическая головка имеет определенное сопротивление постоянному току, зависящее от толщины, длины и материала провода в катушке (такое сопротивление еще называют резистивным или реактивным). При подаче музыкального сигнала, который представляет собой переменный ток, сопротивление головки будет меняться в зависимости от частоты сигнала.

    Импеданс (impedans) — это полное электрическое сопротивление переменному току, измеренное на частоте 1000 Гц. Обычно импеданс акустических систем равен 4, 6 или 8 Ом.

    В целом величина полного электрического сопротивления (импеданс) акустической системы ни о чем, связанном с качеством звучания того или иного изделия, покупателю не скажет. Производителем указывается этот параметр лишь, чтобы сопротивление учитывали при подключении акустической системы к усилителю. Если значение сопротивления колонки ниже, чем рекомендуемое значение нагрузки усилителя, в звучании могут присутствовать искажения или сработает защита от короткого замыкания; если выше, то звук будет значительно тише, нежели с рекомендуемым сопротивлением.

    Корпус колонки, акустическое оформление

    Одним из важных факторов, влияющих на звучание акустической системы, является акустическое оформление излучающей динамической головки (динамика). При конструировании акустических систем производитель обычно сталкивается с проблемой в выборе акустического оформления. Их насчитывается больше десятка видов.

    Акустическое оформление делится на акустически разгруженное и акустически нагруженное. Первое подразумевает оформление, при котором колебание диффузора ограничивается только жесткостью подвеса. При втором колебание диффузора ограничивается помимо жесткости подвеса еще упругостью воздуха и акустическим сопротивлением излучению. Также акустическое оформление делится на системы одинарного и двойного действий. Система одинарного действия характеризуется возбуждением звука, идущего к слушателю, посредством только одной стороны диффузора (излучение другой стороны нейтрализуется акустическим оформлением). Система двойного действия подразумевает использование в формировании звука обеих поверхностей диффузора.

    Поскольку на высокочастотные и среднечастотные динамические головки акустическое оформление колонки практически не влияет, мы расскажем о наиболее распространенных вариантах низкочастотного акустического оформления корпуса.

    Очень широко применима акустическая схема, получившая название «закрытый ящик». Относится к нагруженному акустическому оформлению. Представляет собой закрытый корпус с выведенным на фронтальную панель диффузором динамика. Достоинства: хорошие показатели АЧХ и импульсная характеристика. Недостатки: низкий КПД, необходимость в мощном усилителе, высокий уровень гармонических искажений.

    Но вместо того, чтобы бороться со звуковыми волнами, вызванными колебаниями обратной стороны диффузора, их можно использовать. Наиболее распространенным вариантом из систем двойного действия является фазоинвертор. Представляет собой трубу определенной длины и сечения, вмонтированную в корпус. Длину и сечение фазоинвертора рассчитывают таким образом, что на определенной частоте в нем создается колебание звуковых волн, синфазные с колебаниями, вызванными фронтальной стороной диффузора.

    Для сабвуферов широко применяется акустическая схема с общепринятым названием «ящик-резонатор». В отличие от предыдущего примера диффузор динамика не выведен на панель корпуса, а находится внутри, на перегородке. Сам динамик непосредственного участия в формировании спектра низких частот не принимает. Вместо этого диффузор лишь возбуждает звуковые колебания низкой частоты, которые потом многократно увеличиваются по громкости в трубе фазоинвертора, выполяющего роль резонансной камеры. Достоинством этих конструктивных решений является высокий КПД при малых габаритах сабвуфера. Недостатки проявляются в ухудшении фазовых и импульсных характеристик, звучание становится утомляющим.

    Оптимальным выбором будут колонки среднего размера с деревянным корпусом, выполненные по закрытой схеме или с фазоинвертором. При выборе сабвуфера следует обратить внимание не на его громкость (по этому параметру даже у недорогих моделей обычно имеется достаточный запас), а на достоверное воспроизведение всего диапазона низких частот. С точки зрения качества звучания, наиболее нежелательны колонки с тонким корпусом или очень маленьких размеров.

    Читайте также:  Виды светодиодных лампочек для дома

    admin

    Добавить комментарий

    Ваш e-mail не будет опубликован. Обязательные поля помечены *