0

Должен ли умзч иметь малое выходное сопротивление

Следующим звеном, после входного каскада, следует линейный усилитель. Качество его работы оказывает влияние на функционирование всего устройства и при неудачном схемном решении можно всё «легко и непринужденно» испортить. Эта часть усилителя охватывается общей обратной связью и искажения, возникающие в нём, компенсируются. Вот только не стоит возлагать на последнее повышенные ожидания – единожды возникнув, искажения уже никогда не исчезнут. Существует множество схемных решений подобного узла, поэтому вынести какую-то одну общую рекомендацию затруднительно. Просто перейдем к третьей части.

Выходной каскад оканчивает усилитель, поэтому он должен обеспечивать хорошее согласование с нагрузкой. Это означает работу с большими напряжениями и токами, причем нагрузка обладает довольно большой реактивной составляющей, как по электрическим, так и по механическим характеристикам. Кроме того, геометрические размеры усилителя и тепловая мощность, рассеиваемая на радиаторах, ограничивает его максимальную мощность. Всё это накладывает весьма жесткие требования к возможным схемным решениям, а потому наиболее распространен двухтактный выходной каскад класса АВ.

Идея работы каскада заключается в разделении положительной и отрицательной полуволн на два плеча и формирование тока от положительного или отрицательного источника питания в соответствующие моменты времени. Это хорошо работает с большой амплитудой сигнала, но если уровень уменьшается, то всё более значимым становится момент перехода через нуль – именно тогда происходит переключение выходных транзисторов. Для уменьшения вносимых искажений, в усилителе устанавливается некоторый минимальный ток покоя выходного каскада, что обеспечивает одновременную работу плеч (положительной и отрицательной полуволн) для небольшого уровня сигнала.

реклама

Для обхода этого дефекта можно задать небольшой фоновый ток через неиспользуемый транзистор, что линеаризует рабочую точку (важно для низкого уровня гармоник высокого уровня) и обеспечит рассасывание заряда (устраняет дефект коммутации для высокочастотного сигнала). Или можно пойти дальше, использовать режим ЭА – ‘экономичный А’ (Non switching , Super A). В этом случае ток транзистора неиспользуемого плеча будет плавно уменьшаться по мере увеличения выходного напряжения противоположной полярности.

Для моделирования классов AB и ЭА следующая схема:

Подробнее можно ознакомиться с моделью и выполнить анализ можно над файлом проекта.

реклама

Возьмем два случая – амплитуда сигнала 1 вольт (слева) и 10 вольт (справа):

При низком уровне сигнала класс AB работает в режиме A и потому не вносит каких-либо видимых искажений. У класса ЭА с этим несколько сложнее, потенциально присутствуют четные гармоники из-за очевидной несимметрии тока. Но это только «потенциально», избыточный ток протекает через транзистор противоположного канала и не попадает в нагрузку. Проще говоря, через источники питания течет ток с относительно небольшим уровнем гармоник, что не приводит к негативным последствиям.

При увеличении уровня сигнала класс AB фактически отключает неактивное плечо, а ЭА продолжает пытаться им управлять. Взглянем подробнее на место переключения:

Фактически, в классе ЭА оба плеча одновременно формируют выходное напряжение. Теперь обратимся к спектру гармоник. В данном тесте частота сигнала будет снижена до 100 Гц, что обеспечит большее количество гармоник в слышимом диапазоне, напряжение 10 вольт.

Для класса AB характер спектра гармоник мало зависит от величины тока покоя, а у ЭА лучшие результаты достигаются при средней степени агрессивности управления током. Скорее всего, неудачность красного и зеленого графика следует из идеологии управления током транзистора – на момент перехода транзистора из рабочего состояния в нерабочее его ток меняется довольно резко, что порождает больше гармоник, чем устраняется компенсацией управления током в противоположном плече.

В схемотехнике усилителей звуковой частоты на радиолампах применяется либо класс А, либо класс AB, который в пристальном рассмотрении оказывается классом ЭА с низким или отсутствующим током управления (фиолетовый и серый график). Если сравнить с классом AB, реализуемым в большинстве усилителей на транзисторах (и, конечно же, в интегральном исполнении), то спектр его помех интенсивнее и шире.

Выходное сопротивление усилителя

Обычный усилитель обладает крайне низким выходным сопротивлением, обусловленным эффективной работой общей отрицательной обратной связи. Как-то сложилось, что данное решение считается правильным и под него проектируют фильтры акустических систем и динамические головки. Но действительно ли это хорошо? Рассмотрим два дефекта, свойственных акустическим системам – потери и искажения в проводах, соединяющих усилитель и динамики, а также искажения в самих динамических головках при перемещении диффузора.

Довольно давно обнаружен эффект изменения сопротивления медного проводника при воздействии током разной силы и частоты, так называемый «полупроводниковый эффект». Величина изменения незначительна и никак не проявляет себя в обычных областях применения – передача электроэнергии, блоки питания, но приводит к искажениям при использовании его для передачи сильноточного звукового сигнала от усилителя к акустическим системам. Для обхода этой проблемы выпускают проводники из меди со специальной технологией изготовления, «бескислородная медь». Кроме того, соединители и разъемы тоже обладают свойством вносить искажения в передаваемый сигнал, ведь их сопротивление сочленения непостоянно во времени, хоть и мало по величине.

В тесте будут участвовать идеальные усилители с тремя типами выходного сопротивления:

  • С крайне низким выходным сопротивлением.
  • Выходное сопротивление усилителя в четыре раза больше сопротивления нагрузки.
  • Усилитель работает в режиме ‘источник тока’ и его выходное сопротивление крайне велико.

реклама

В симуляции будет использована следующая модель:

Для эмуляции искажений в нагрузку введен нелинейный элемент из низкоомного резистора и диода Шоттки. Можно было создать искажения линейной нагрузки любым другим способом, для теста это не существенно. В данной симуляции измеряются токи через нагрузки, а не напряжения. Это вызвано тем, что именно ток через катушку вызывает перемещение диффузора обычной динамической головки (и что совершенно не так для электростатических излучающих элементов).

Хотелось бы остановиться на цветной идентификации графиков:

  • Зеленый – контрольный, идеальный случай. Во всех остальных вариантах в нагрузку внесен нелинейный элемент.
  • Красный – обычный усилитель с крайне низким выходным сопротивлением.
  • Черный – усилитель с выходным сопротивлением в четыре раза больше, чем сопротивление нагрузки.
  • Синий – выходное сопротивление очень большое, усилитель работает в режиме источника тока.

Нет смысла приводить полученный сигнал, все осциллограммы практически совпадают. Гораздо интереснее посмотреть на спектр:

реклама

Вы видите здесь зеленый график? Я – нет, его полностью закрыл синий (режим источника тока). Это означает, что увеличение выходного сопротивления усилителя уменьшает вред от нелинейных элементов, которые присутствуют в соединительных элементах между усилителем и динамической головкой.

Теперь перейдем к другой проблеме – изменение индуктивности обмотки катушки динамика при перемещении в поле магнитного зазора. В тесте будут участвовать всё те же три усилителя, а эмуляцию нелинейной индуктивности выполним на дросселе с материалом 4C6. Схема выглядит следующим образом:

Соображения по данной схеме полностью изложены в предыдущем тесте и специальных комментариев не требуется. Посмотрим на спектр:

реклама

Налицо явные интермодуляционные искажения. Как и в предыдущем тесте, по мере увеличения выходного сопротивления усилителя уменьшаются негативные последствия изменения свойств дросселя (то есть индуктивности катушки динамика).

Существует еще один нюанс, связанный с выходным сопротивлением усилителя – импеданс акустической системы непостоянен в рабочей полосе частот. В области низких частот вносятся резонансные эффекты от собственной механической системы динамика и фазоинвертора, для средних частот – разделительный фильтр оказывает влияние в областях раздела рабочих полос динамиков.

Кроме того, зачастую акустические системы проектируются под усилитель с низким выходным сопротивлением, а потому никто не заботится о сохранении постоянного импеданса акустической системы. Если одна из головок с повышенной чувствительностью, то последовательно с ней устанавливают дополнительный постоянный резистор, что увеличивает импеданс колонки в области рабочих частот этого динамика. Если такую колонку подключить к усилителю с повышенным выходным сопротивлением, то характер звучания станет другим.

Впрочем, тщательной отстройкой элементов фильтра это дефект можно устранить или в значительной степени уменьшить, но вот резонансные явления в низкочастотной части компенсировать нельзя. Поправка – можно, но крайне неприятно – придется ставить высокодобротный и тщательно настроенный LC контур параллельно низкочастотной динамической головке.

реклама

От себя хочу добавить, что такой прием не слишком хорош, и у него есть возможные неприятные последствия, поэтому лучше менять тип выходного сопротивления усилителя в зависимости от частоты сигнала, чем «издеваться» над динамическими головками. В этом вопросе важно то, что переход на усилитель с токовым выходом меняет характер звучания и кому-то это может нравиться или не нравиться, но у него нет ничего общего с устранением искажений в акустической системе, озвученных в последних двух тестах.

Итак, речь идет о радиолампах, так при чем здесь выходное сопротивление? Увы, прямо следует из технологии. В усилителе выходное сопротивление достаточно велико и маленьким его делает общая обратная связь. Чем она мощнее, чем больший запас петлевого усиления, тем лучше компенсируются все искажения в усилителе… в том числе и выходное сопротивление. В усилителях на радиолампах глубина обратной связи мала, да и сами регулирующие элементы обладают значительным внутренним сопротивлением (радиолампы вообще, по своей природе, являются скорее источниками тока, чем сопротивлениями).

Как следствие, ламповые усилители обладают отнюдь не низким выходным сопротивлением, а потому – смотрите раздел – в некоторой степени компенсируют негативные элементы в акустической системе и соединении с усилителем. Что мешает такое же реализовать в «транзисторном» исполнении.

реклама

Понимание того, что водители этого вида транспорта являются профессионалами своего дела, плохо скрашивают ощущения старт-стопного режима в пробке. Быстрый разгон и малое время торможения – отличный способ двигаться в потоке, вот только о дровах забыли? Более мощная динамика автобуса позволяет быстрее доставить до места, но кому нужна экономия пяти процентов времени такой ценой?

Со схемотехникой усилителей схожая беда. Да, транзисторы эффективнее и лучше радиоламп. При конструировании аппаратуры можно получить сверхнизкий уровень гармоник и других характеристик усилителя (выходное сопротивление, скорость нарастания выходного сигнала, максимальная частота и прочие), но с какими последствиями? Дело не в количестве компонентов, SOT-23 или интегральные решения занимают мизерное место, по сравнению с одной единственной радиолампой. Проблема кроется в подходе – в борьбе за «красивые цифры» часто забывают о главном – качестве звучания.

Читайте также:  Вконтакте не работает музыка что делать

Довольно показательно отношение разных фирм к схемотехнике усилителей – японские модели обладают лучшими техническими характеристиками, чем европейские разработки, но звучат хуже. Данное мнение было высказано авторитетным источником, но довольно давно, поэтому ссылки привести не могу. Впрочем, я с ним согласен, мои аргументы изложены в этой статье. Радиолампы – атавизм, которому пора уходить. Просто надо использовать нормальные схемные решения, учитывать всё нюансы и проблемы, а не гнаться за красивыми цифрами. Согласны вы с этим или нет, выбор за вами. Пожалуйста, сделайте его осмысленно.

Следующим звеном, после входного каскада, следует линейный усилитель. Качество его работы оказывает влияние на функционирование всего устройства и при неудачном схемном решении можно всё «легко и непринужденно» испортить. Эта часть усилителя охватывается общей обратной связью и искажения, возникающие в нём, компенсируются. Вот только не стоит возлагать на последнее повышенные ожидания – единожды возникнув, искажения уже никогда не исчезнут. Существует множество схемных решений подобного узла, поэтому вынести какую-то одну общую рекомендацию затруднительно. Просто перейдем к третьей части.

Выходной каскад оканчивает усилитель, поэтому он должен обеспечивать хорошее согласование с нагрузкой. Это означает работу с большими напряжениями и токами, причем нагрузка обладает довольно большой реактивной составляющей, как по электрическим, так и по механическим характеристикам. Кроме того, геометрические размеры усилителя и тепловая мощность, рассеиваемая на радиаторах, ограничивает его максимальную мощность. Всё это накладывает весьма жесткие требования к возможным схемным решениям, а потому наиболее распространен двухтактный выходной каскад класса АВ.

Идея работы каскада заключается в разделении положительной и отрицательной полуволн на два плеча и формирование тока от положительного или отрицательного источника питания в соответствующие моменты времени. Это хорошо работает с большой амплитудой сигнала, но если уровень уменьшается, то всё более значимым становится момент перехода через нуль – именно тогда происходит переключение выходных транзисторов. Для уменьшения вносимых искажений, в усилителе устанавливается некоторый минимальный ток покоя выходного каскада, что обеспечивает одновременную работу плеч (положительной и отрицательной полуволн) для небольшого уровня сигнала.

реклама

Для обхода этого дефекта можно задать небольшой фоновый ток через неиспользуемый транзистор, что линеаризует рабочую точку (важно для низкого уровня гармоник высокого уровня) и обеспечит рассасывание заряда (устраняет дефект коммутации для высокочастотного сигнала). Или можно пойти дальше, использовать режим ЭА – ‘экономичный А’ (Non switching , Super A). В этом случае ток транзистора неиспользуемого плеча будет плавно уменьшаться по мере увеличения выходного напряжения противоположной полярности.

Для моделирования классов AB и ЭА следующая схема:

Подробнее можно ознакомиться с моделью и выполнить анализ можно над файлом проекта.

реклама

Возьмем два случая – амплитуда сигнала 1 вольт (слева) и 10 вольт (справа):

При низком уровне сигнала класс AB работает в режиме A и потому не вносит каких-либо видимых искажений. У класса ЭА с этим несколько сложнее, потенциально присутствуют четные гармоники из-за очевидной несимметрии тока. Но это только «потенциально», избыточный ток протекает через транзистор противоположного канала и не попадает в нагрузку. Проще говоря, через источники питания течет ток с относительно небольшим уровнем гармоник, что не приводит к негативным последствиям.

При увеличении уровня сигнала класс AB фактически отключает неактивное плечо, а ЭА продолжает пытаться им управлять. Взглянем подробнее на место переключения:

Фактически, в классе ЭА оба плеча одновременно формируют выходное напряжение. Теперь обратимся к спектру гармоник. В данном тесте частота сигнала будет снижена до 100 Гц, что обеспечит большее количество гармоник в слышимом диапазоне, напряжение 10 вольт.

Для класса AB характер спектра гармоник мало зависит от величины тока покоя, а у ЭА лучшие результаты достигаются при средней степени агрессивности управления током. Скорее всего, неудачность красного и зеленого графика следует из идеологии управления током транзистора – на момент перехода транзистора из рабочего состояния в нерабочее его ток меняется довольно резко, что порождает больше гармоник, чем устраняется компенсацией управления током в противоположном плече.

В схемотехнике усилителей звуковой частоты на радиолампах применяется либо класс А, либо класс AB, который в пристальном рассмотрении оказывается классом ЭА с низким или отсутствующим током управления (фиолетовый и серый график). Если сравнить с классом AB, реализуемым в большинстве усилителей на транзисторах (и, конечно же, в интегральном исполнении), то спектр его помех интенсивнее и шире.

Выходное сопротивление усилителя

Обычный усилитель обладает крайне низким выходным сопротивлением, обусловленным эффективной работой общей отрицательной обратной связи. Как-то сложилось, что данное решение считается правильным и под него проектируют фильтры акустических систем и динамические головки. Но действительно ли это хорошо? Рассмотрим два дефекта, свойственных акустическим системам – потери и искажения в проводах, соединяющих усилитель и динамики, а также искажения в самих динамических головках при перемещении диффузора.

Довольно давно обнаружен эффект изменения сопротивления медного проводника при воздействии током разной силы и частоты, так называемый «полупроводниковый эффект». Величина изменения незначительна и никак не проявляет себя в обычных областях применения – передача электроэнергии, блоки питания, но приводит к искажениям при использовании его для передачи сильноточного звукового сигнала от усилителя к акустическим системам. Для обхода этой проблемы выпускают проводники из меди со специальной технологией изготовления, «бескислородная медь». Кроме того, соединители и разъемы тоже обладают свойством вносить искажения в передаваемый сигнал, ведь их сопротивление сочленения непостоянно во времени, хоть и мало по величине.

В тесте будут участвовать идеальные усилители с тремя типами выходного сопротивления:

  • С крайне низким выходным сопротивлением.
  • Выходное сопротивление усилителя в четыре раза больше сопротивления нагрузки.
  • Усилитель работает в режиме ‘источник тока’ и его выходное сопротивление крайне велико.

реклама

В симуляции будет использована следующая модель:

Для эмуляции искажений в нагрузку введен нелинейный элемент из низкоомного резистора и диода Шоттки. Можно было создать искажения линейной нагрузки любым другим способом, для теста это не существенно. В данной симуляции измеряются токи через нагрузки, а не напряжения. Это вызвано тем, что именно ток через катушку вызывает перемещение диффузора обычной динамической головки (и что совершенно не так для электростатических излучающих элементов).

Хотелось бы остановиться на цветной идентификации графиков:

  • Зеленый – контрольный, идеальный случай. Во всех остальных вариантах в нагрузку внесен нелинейный элемент.
  • Красный – обычный усилитель с крайне низким выходным сопротивлением.
  • Черный – усилитель с выходным сопротивлением в четыре раза больше, чем сопротивление нагрузки.
  • Синий – выходное сопротивление очень большое, усилитель работает в режиме источника тока.

Нет смысла приводить полученный сигнал, все осциллограммы практически совпадают. Гораздо интереснее посмотреть на спектр:

реклама

Вы видите здесь зеленый график? Я – нет, его полностью закрыл синий (режим источника тока). Это означает, что увеличение выходного сопротивления усилителя уменьшает вред от нелинейных элементов, которые присутствуют в соединительных элементах между усилителем и динамической головкой.

Теперь перейдем к другой проблеме – изменение индуктивности обмотки катушки динамика при перемещении в поле магнитного зазора. В тесте будут участвовать всё те же три усилителя, а эмуляцию нелинейной индуктивности выполним на дросселе с материалом 4C6. Схема выглядит следующим образом:

Соображения по данной схеме полностью изложены в предыдущем тесте и специальных комментариев не требуется. Посмотрим на спектр:

реклама

Налицо явные интермодуляционные искажения. Как и в предыдущем тесте, по мере увеличения выходного сопротивления усилителя уменьшаются негативные последствия изменения свойств дросселя (то есть индуктивности катушки динамика).

Существует еще один нюанс, связанный с выходным сопротивлением усилителя – импеданс акустической системы непостоянен в рабочей полосе частот. В области низких частот вносятся резонансные эффекты от собственной механической системы динамика и фазоинвертора, для средних частот – разделительный фильтр оказывает влияние в областях раздела рабочих полос динамиков.

Кроме того, зачастую акустические системы проектируются под усилитель с низким выходным сопротивлением, а потому никто не заботится о сохранении постоянного импеданса акустической системы. Если одна из головок с повышенной чувствительностью, то последовательно с ней устанавливают дополнительный постоянный резистор, что увеличивает импеданс колонки в области рабочих частот этого динамика. Если такую колонку подключить к усилителю с повышенным выходным сопротивлением, то характер звучания станет другим.

Впрочем, тщательной отстройкой элементов фильтра это дефект можно устранить или в значительной степени уменьшить, но вот резонансные явления в низкочастотной части компенсировать нельзя. Поправка – можно, но крайне неприятно – придется ставить высокодобротный и тщательно настроенный LC контур параллельно низкочастотной динамической головке.

реклама

От себя хочу добавить, что такой прием не слишком хорош, и у него есть возможные неприятные последствия, поэтому лучше менять тип выходного сопротивления усилителя в зависимости от частоты сигнала, чем «издеваться» над динамическими головками. В этом вопросе важно то, что переход на усилитель с токовым выходом меняет характер звучания и кому-то это может нравиться или не нравиться, но у него нет ничего общего с устранением искажений в акустической системе, озвученных в последних двух тестах.

Итак, речь идет о радиолампах, так при чем здесь выходное сопротивление? Увы, прямо следует из технологии. В усилителе выходное сопротивление достаточно велико и маленьким его делает общая обратная связь. Чем она мощнее, чем больший запас петлевого усиления, тем лучше компенсируются все искажения в усилителе… в том числе и выходное сопротивление. В усилителях на радиолампах глубина обратной связи мала, да и сами регулирующие элементы обладают значительным внутренним сопротивлением (радиолампы вообще, по своей природе, являются скорее источниками тока, чем сопротивлениями).

Читайте также:  Виндовс не может отформатировать карту памяти

Как следствие, ламповые усилители обладают отнюдь не низким выходным сопротивлением, а потому – смотрите раздел – в некоторой степени компенсируют негативные элементы в акустической системе и соединении с усилителем. Что мешает такое же реализовать в «транзисторном» исполнении.

реклама

Понимание того, что водители этого вида транспорта являются профессионалами своего дела, плохо скрашивают ощущения старт-стопного режима в пробке. Быстрый разгон и малое время торможения – отличный способ двигаться в потоке, вот только о дровах забыли? Более мощная динамика автобуса позволяет быстрее доставить до места, но кому нужна экономия пяти процентов времени такой ценой?

Со схемотехникой усилителей схожая беда. Да, транзисторы эффективнее и лучше радиоламп. При конструировании аппаратуры можно получить сверхнизкий уровень гармоник и других характеристик усилителя (выходное сопротивление, скорость нарастания выходного сигнала, максимальная частота и прочие), но с какими последствиями? Дело не в количестве компонентов, SOT-23 или интегральные решения занимают мизерное место, по сравнению с одной единственной радиолампой. Проблема кроется в подходе – в борьбе за «красивые цифры» часто забывают о главном – качестве звучания.

Довольно показательно отношение разных фирм к схемотехнике усилителей – японские модели обладают лучшими техническими характеристиками, чем европейские разработки, но звучат хуже. Данное мнение было высказано авторитетным источником, но довольно давно, поэтому ссылки привести не могу. Впрочем, я с ним согласен, мои аргументы изложены в этой статье. Радиолампы – атавизм, которому пора уходить. Просто надо использовать нормальные схемные решения, учитывать всё нюансы и проблемы, а не гнаться за красивыми цифрами. Согласны вы с этим или нет, выбор за вами. Пожалуйста, сделайте его осмысленно.

(О СНИЖЕНИИ ИНТЕРМОДУЛЯЦИОННЫХ ИСКАЖЕНИЙ И ПРИЗВУКОВ В ГРОМКОГОВОРИТЕЛЯХ)

Разницу в звучании громкоговорителей при работе с различными УМЗЧ, в первую очередь, замечают, сравнивая ламповые и транзисторные усилители: спектр их гармонических искажений часто существенно отличается. Иногда заметные отличия бывают и среди усилителей одной и той же группы. Например, в одном из аудиожурналов оценки, данные ламповым УМЗЧ мощностью 12 и 50 Вт, склонялись в пользу менее мощного. Или оценка была необъективной?

Как нам кажется, автор статьи доказательно объясняет одну из мистических причин возникновения в громкоговорителях переходных и интермодуляционных искажений, создающих заметную разницу в звучании при работе с различными УМЗЧ. Он предлагает также доступные методы существенного снижения искажений громкоговорителей, которые достаточно просто реализуются с применением современной элементной базы.

В настоящее время считается общепризнанным, что одним из требований к усилителю мощности является обеспечение неизменности его выходного напряжения при изменении сопротивления нагрузки. Иными словами, выходное сопротивление УМЗЧ должно быть невелико по сравнению с нагрузочным, составляя не более 1/10. 1/1000 от модуля сопротивления (импеданса) нагрузки |Zн|. Эта точка зрения отражена в многочисленных стандартах и рекомендациях, а также в литературе. Специально введен даже такой параметр, как коэффициент демпфирования – Kd (или демпинг-фактор), равный отношению номинального сопротивления нагрузки к выходному сопротивлению усилителя Rвых УМ. Так, при номинальном сопротивлении нагрузки, равном 4 Ом, и выходном сопротивлении усилителя 0,05 Ом Kd будет равен 80. Действующие ныне стандарты на аппаратуру HiFi требуют, чтобы значение коэффициента демпфирования у высококачественных усилителей было бы не менее 20 (а рекомендуется – не менее 100). Для большинства транзисторных усилителей, имеющихся в продаже, Kd превышает 200.
Доводы в пользу малого Rвых УМ (и соответственно высокого Kd) общеизвестны: это обеспечение взаимозаменяемости усилителей и акустических систем, получение эффективного и предсказуемого демпфирования основного (низкочастотного) резонанса громкоговорителя, а также удобство измерения и сопоставления характеристик усилителей. Однако, несмотря на правомерность и обоснованность вышеприведенных соображений, вывод о необходимости такого соотношения, по мнению автора, принципиально ошибочен!

Всё дело в том, что этот вывод делается без учета физики работы электродинамических головок громкоговорителей (ГГ). Подавляющее большинство разработчиков усилителей искренне полагает, что всё, что от них требуется – это выдать напряжение требуемой величины на заданном сопротивлении нагрузки с возможно меньшими искажениями. Разработчики громкоговорителей, в свою очередь, вроде бы должны исходить из того, что их изделия будут питаться от усилителей с пренебрежимо малым выходным сопротивлением. Казалось бы, все просто и ясно – какие тут могут быть вопросы?

Тем не менее, вопросы, и очень серьёзные, имеются. Главным из них является вопрос о величине интермодуляционных искажений, вносимых ГГ при работе ее от усилителя с пренебрежимо малым внутренним сопротивлением (источника напряжения или источника ЭДС).

«Какое отношение к этому может иметь выходное сопротивление усилителя? Не морочьте мне голову!» – скажет читатель. – И ошибётся. Имеет, и самое прямое, несмотря на то, что факт этой зависимости упоминается крайне редко. Во всяком случае, не обнаружено современных работ, в которых бы рассматривалось это влияние на все параметры сквозного электроакустического тракта – от напряжения на входе усилителя до звуковых колебаний. При рассмотрении этой темы ранее почему-то ограничивались анализом поведения ГГ вблизи основного резонанса на нижних частотах, тогда как не менее интересное происходит на заметно более высоких частотах – на пару октав выше резонансной частоты.

Для восполнения этого пробела и предназначена эта статья. Надо сказать, что для повышения доступности изложение весьма упрощено и схематизировано, поэтому ряд «тонких» вопросов остался нерассмотренным. Итак, чтобы понять, как выходное сопротивление УМЗЧ влияет на интермодуляционные искажения в громкоговорителях, надо вспомнить, какова физика излучения звука диффузором ГГ.

Ниже частоты основного резонанса при подаче синусоидального напряжения сигнала на обмотку звуковой катушки ГГ амплитуда смещения её диффузора определяется упругим противодействием подвеса (или сжимаемого в закрытом ящике воздуха) и почти не зависит от частоты сигнала. Работа ГГ в этом режиме характеризуется большими искажениями и очень низкой отдачей полезного акустического сигнала (очень низким КПД).

На частоте основного резонанса масса диффузора вместе с колеблющейся массой воздуха и упругостью подвеса образуют колебательную систему, аналогичную грузику на пружинке. КПД излучения в этой области частот близок к максимальному для данной ГГ.

Выше частоты основного резонанса силы инерции диффузора вместе с колеблющейся массой воздуха оказываются большими, чем силы упругости подвеса, поэтому смещение диффузора оказывается обратно пропорциональным квадрату частоты. Однако ускорение диффузора при этом теоретически не зависит от частоты, что и обеспечивает равномерность АЧХ по звуковому давлению. Следовательно, для обеспечения равномерности АЧХ ГГ на частотах выше частоты основного резонанса к диффузору со стороны звуковой катушки необходимо прикладывать силу постоянной амплитуды, как это следует из второго закона Ньютона (F=m*a).

Сила же, действующая на диффузор со стороны звуковой катушки, пропорциональна току в ней. При подключении ГГ к источнику напряжения U ток I в звуковой катушке на каждой частоте определяется из закона Ома I(f)=U/Zг(f), где Zг(f) – зависящее от частоты комплексное сопротивление звуковой катушки. Оно определяется преимущественно тремя величинами: активным сопротивлением звуковой катушки Rг (измеряемым омметром), индуктивностью Lг. На ток влияет также и противо-ЭДС, возникающая при перемещении звуковой катушки в магнитном поле и пропорциональная скорости перемещения.

На частотах заметно выше основного резонанса величиной противо-ЭДС можно пренебречь, поскольку диффузор со звуковой катушкой просто не успевают разогнаться за половину периода частоты сигнала. Поэтому зависимость Zг(f) выше частоты основного резонанса определяется в основном величинами Rг и Lг

Так вот, ни сопротивление Rг, ни индуктивность Lг особым постоянством не отличаются. Сопротивление звуковой катушки сильно зависит от температуры (ТКС меди около +0,35%/ о С), а температура звуковой катушки малогабаритных среднечастотных ГГ при нормальной работе изменяется на величину в 30. 50 о С и причем весьма быстро – за десятки миллисекунд и менее. Соответственно, сопротивление звуковой катушки , а следовательно, и ток через неё, и звуковое давление при неизменном приложенном напряжении изменяются на 10. 15%, создавая интермодуляционные искажения соответствующей величины (в низкочастотных ГГ, тепловая инерционность которых велика, разогрев звуковой катушки вызывает эффект тепловой компрессии сигнала).

Изменения индуктивности ещё более сложны. Амплитуда и фаза тока через звуковую катушку на частотах заметно выше резонансной в значительной мере определяются величиной индуктивности. А она очень сильно зависит от положения звуковой катушки в зазоре: при нормальной амплитуде смещения для частот, лишь немногим больших, нежели частота основного резонанса, индуктивность изменяется на 15. 40% у различных ГГ. Соответственно при номинальной мощности, подводимой к громкоговорителю, интермодуляционные искажения могут достигать 10. 25%.

Сказанное выше иллюстрируется фотографией осциллограмм звукового давления, снятых на одной из лучших отечественных среднечастотных ГГ – 5ГДШ-5-4. Структурная схема измерительной установки приведена на рисунке.

В качестве источника двухтонального сигнала применены пара генераторов и два усилителя, между выходами которых подключена испытуемая ГГ, установленная на акустическом экране площадью около 1 м 2 . Два отдельных усилителя с большим запасом по мощности (400 Вт) использованы с целью избежать образования интермодуляционных искажений при прохождении двухтонового сигнала через усилительный тракт. Звуковое давление, развиваемое головкой, воспринималось ленточным электродинамическим микрофоном, нелинейные искажения которого составляют величину менее -66дБ при уровне звукового давления 130 дБ. Звуковое давление такого громкоговорителя в этом эксперименте составляло примерно 96 дБ, та что искажениями микрофона при данных условиях можно было пренебречь.

Как видно на осциллограммах на экране верхнего осциллографа (верхняя – без фильтрации, нижняя – после фильтрации ФВЧ), модуляция сигнала с частотой 4 кГц под воздействием другого с частотой 300 Гц (при мощности на головке 2,5 Вт) превышает 20%. Это соответствует величине интермодуляционных искажений около 15%. Думается, нет нужды напоминать о том, что порог заметности продуктов интермодуляционных искажений лежит намного ниже одного процента, достигая в ряде случаев сотых долей процента. Понятно, что искажения УМЗЧ, если только они имеют «мягкий» характер, и не превышают нескольких сотых процента, просто неразличимы на фоне искажений в громкоговорителе, вызванных его работой от источника напряжения. Интермодуляционные продукты искажений разрушают прозрачность и детальность звучания – получается «каша», в которой отдельные инструменты и голоса слышны лишь изредка. Этот тип звучания наверняка хорошо знаком читателям (хорошим тестом на искажения может служить фонограмма детского хора).

Читайте также:  Интернет edge не работает

Однако существует способ резко уменьшить описанные выше искажения, вызванные непостоянством импеданса головки громкоговорителя. Для этого усилитель, работающий на громкоговоритель, должен иметь выходное сопротивление, много большее, чем составляющие импеданса Rг и Xг (2p fLг) ГГ. Тогда их изменения практически не будут оказывать влияния на ток в звуковой катушке, а следовательно, исчезнут и искажения, вызванные этими изменениями. С целью демонстрации эффективности такого метода снижения искажений измерительная установка была дополнена резистором сопротивлением 47 Ом (т.е. на порядок больше модуля импеданса исследуемой ГГ), включенным последовательно с ГГ. Для сохранения прежней величины звукового давления уровни сигналов на выходах усилителей были соответственно увеличены. Эффект перехода на токовый режим очевиден из сравнения соответствующих осциллограмм: паразитная модуляция высокочастотного сигнала на экране нижнего осциллографа значительно меньше и еле видна, величина её не превышает 2. 3% – налицо резкое снижение искажений ГГ.

Знатоки могут возразить, что для уменьшения непостоянства импеданса звуковой катушки существует множество способов: это и заполнение зазора охлаждающей магнитной жидкостью, и установка медных колпачков на керны магнитной системы, и тщательный подбор профиля керна и плотности намотки катушки, а также многое другое. Однако все эти методы, во-первых, не решают проблему в принципе, а во-вторых, ведут к усложнению и удорожанию производства ГГ, вследствие чего не находят полного применения даже в студийных громкоговорителях. Именно поэтому большинство среднечастотных и низкочастотных ГГ не имеет ни медных колпачков, ни магнитной жидкости (в таких ГГ при работе на полной мощности жидкость нередко выбрасывается из зазора).

Следовательно, питание ГГ от высокоомного источника сигнала (в пределе – от источника тока) является полезным и целесообразным способом снижения их интермодуляционных искажений, особенно при построении многополосных активных акустических систем. Демпфирование основного резонанса при этом приходится выполнять чисто акустическим путем, поскольку собственная акустическая добротность среднечастотных ГГ, как правило, значительно превышает единицу, достигая 4. 8.

Любопытно, что именно такой режим «токового» питания ГГ имеет место в ламповых УМЗЧ с пентодным или тетродным выходом при неглубокой (менее 10 дБ) ООС, особенно при наличии местной ООС по току в виде сопротивления в цепи катода.

В процессе налаживания такого усилителя его искажения без общей ООС обычно оказываются в пределах 2. 5% и уверенно заметны на слух при включении в разрыв контрольного тракта (метод сравнения с «прямым проводом»). Однако после подключения усилителя к громкоговорителю обнаруживается, что по мере увеличения глубины обратной связи звучание сначала улучшается, а затем происходит потеря его детальности и прозрачности. Особенно четко это заметно в многополосном усилителе, выходные каскады которого работают непосредственно на соответствующие головки громкоговорителей без каких-либо фильтров.

Причина этого, на первый взгляд, парадоксального явления в том, что при увеличении глубины ООС по напряжению выходное сопротивление усилителя резко снижается. Негативные последствия питания ГГ от УМЗЧ с малым выходным сопротивлением рассмотрены выше. В триодном усилителе выходное сопротивление, как правило, намного меньше, чем в пентодном или тетродном, а линейность до введения ООС выше, поэтому введение ООС по напряжению улучшает работу отдельно взятого усилителя, но вместе с тем ещё более ухудшает работу головки громкоговорителя. Как следствие, в результате введения ООС по выходному напряжению в триодный усилитель звук, действительно, может становиться хуже, несмотря на улучшение характеристик собственно усилителя! Этот эмпирически установленный факт служит неиссякаемой пищей для спекуляций на тему вреда от применения обратных связей в звуковых усилителях мощности, а также рассуждений об особой, ламповой прозрачности и естественности звучания. Однако из вышерассмотренных фактов со всей очевидностью следует, что дело не в наличии (или отсутствии) самой по себе ООС, а в результирующем выходном сопротивлении усилителя. Вот где «собака зарыта»!

Стоит сказать несколько слов об использовании отрицательного выходного сопротивления УМЗЧ. Да, положительная обратная связь (ПОС) по току помогает задемпфировать ГГ на частоте основного резонанса и уменьшить мощность, рассеиваемую на звуковой катушке. Однако за простоту и эффективность демпфирования приходится платить возрастанием влияния индуктивности ГГ на её характеристики, даже по сравнению с режимом работы от источника напряжения. Это вызвано тем, что постоянная времени Lг/Rг заменяется на большую, равную Lг/[Rг+(-Rвых.УМ)]. Соответственно понижается частота, начиная с которой в сумме импедансов системы «ГГ + УМЗЧ» начинает доминировать индуктивное сопротивление. Аналогично увеличивается и влияние тепловых изменений активного сопротивления звуковой катушки: сумма изменяющегося сопротивления звуковой катушки и неизменного отрицательного выходного сопротивления усилителя в процентном отношении изменяется сильнее.

Конечно, если Rвых.УМ по абсолютной величине не превышает 1/3. 1/5 от активного сопротивления обмотки звуковой катушки, потеря от введения ПОС невелика. Поэтому слабую ПОС по току для небольшого дополнительного демпфирования или для точной подстройки добротности в низкочастотной полосе применять можно. Кроме того, ПОС по току и режим источника тока в УМЗЧ не совместимы между собой, вследствие чего токовое питание ГГ в низкочастотной полосе, к сожалению, оказывается не всегда применимым.

С интермодуляционными искажениями мы, видимо, разобрались. Теперь осталось рассмотреть второй вопрос – величину и длительность призвуков, возникающих в диффузоре ГГ при воспроизведении сигналов импульсного характера. Этот вопрос гораздо сложнее и «тоньше».

Как известно, диффузоры ГГ можно считать бесконечно жесткими только в очень грубом приближении. На самом же деле они при колебаниях существенно изгибаются, причем весьма причудливым образом. Это связано с наличием большого числа паразитных резонансных частот диффузора и подвижной системы ГГ в целом. После прохождения импульсного сигнала свободные колебания на каждой из резонансных частот затухают не сразу, порождая призвуки, окрашивают звучание и скрадывают ясность и детальность, ухудшая стереоэффект.

Для исключения этих призвуков теоретически есть две возможности. Первая – это сдвинуть все резонансные частоты за пределы рабочего диапазона частот, в область далекого ультразвука (50. 100 кГц). Этим способом пользуются при разработке маломощных высокочастотных ГГ и некоторых измерительных микрофонов. Применительно к ГГ – это способ «жесткого» диффузора.

Вторая возможность – это снижение добротности паразитных резонансов, с тем чтобы колебания затухали настолько быстро, что их нельзя услышать. Для этого необходимо применение «мягких» диффузоров, потери при изгибе которых настолько велики, что добротность паразитных резонансов оказывается близка к единице. Однако нелинейные искажения и максимальное звуковое давление ГГ с «мягким» диффузором оказываются несколько хуже, чем у ГГ с «жестким» диффузором. С другой стороны, ГГ с «мягкими» диффузорами, как правило, значительно выигрывают по ясности, неокрашенности и прозрачности звучания.

Так вот, возможен и третий вариант – использование ГГ с относительно «жестким» диффузором и введение её акустического демпфирования. В этом случае удается в некоторой мере совместить достоинства обоих подходов. Именно таким образом чаще всего строятся студийные контрольные громкоговорители (большие мониторы). Естественно, что при питании демпфированной ГГ от источника напряжения из-за резкого падения полной добротности основного резонанса существенно искажается АЧХ. Источник тока в этом случае также оказывается предпочтительнее, поскольку способствует выравниванию АЧХ одновременно с исключением эффекта термической компрессии.

Что же касается призвуков, возникающих из-за свободных колебаний диффузоров ГГ, то, поскольку паразитные резонансные частоты расположены, как правило, намного выше частоты основного резонанса, режим работы ГГ – с источником тока или напряжения – практически никакого влияния на них не оказывает. Единственный прямой способ борьбы с паразитными резонансами – акустическое демпфирование. Однако вероятность их возбуждения при питании ГГ от источника тока оказывается меньшей, поскольку эти резонансы становятся наиболее заметными при их возбуждении продуктами искажений. Как абсолютные, так и относительные амплитуды этих продуктов искажений для этого режима работы ГГ оказываются существенно меньше.

Обобщая вышеизложенное, можно сделать следующие практические выводы:

1. Режим работы головки громкоговорителя от источника тока (в противоположность источнику напряжения) обеспечивает существенное снижение интермодуляционных искажений, вносимых самой головкой.

2. Наиболее целесообразный вариант конструкции громкоговорителя с низкими интермодуляционными искажениями – активный многополосный, с разделительным фильтром (кроссовером) и отдельными усилителями на каждую полосу. Впрочем, этот вывод справедлив независимо от режима питания ГГ.

3. Работа головок от источников тока вызывает необходимость акустического демпфирования их основного резонанса, вследствие чего попутно достигается и некоторое демпфирование паразитных резонансов подвижной системы. Это улучшает импульсные характеристики громкоговорителя и способствует устранению дополнительной окраски звучания.

4. С целью получения высокого выходного сопротивления усилителя и сохранения малой величины его искажений следует применять ООС не по напряжению, а по току.

Конечно, автор понимает, что предлагаемый метод снижения искажений не является панацеей. Кроме того, в случае использования готового многополосного громкоговорителя осуществление токового питания его отдельных ГГ без переделки невозможна. Попытка же подключения многополосного громкоговорителя в целом к усилителю с повышенным выходным сопротивлением приведёт не столько к снижению искажений, сколько к резкому искажению АЧХ и соответственно, сбою тонального баланса. Тем не менее снижение интермодуляционных искажений ГГ почти на порядок, причем столь доступным методом, явно заслуживает достойного внимания.

С.АГЕЕВ, г. Москва

Автор благодарит сотрудников НИКФИ Сырицо А.П. за помощь при проведении измерений и Шрайбмана А.Э. за обсуждение результатов.

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *