0

Задачи на тангенциальное и нормальное ускорение

В кинематике для однозначного определения характеристик движения тела в любой точке траектории необходимо знать его скорость и ускорение. Зависимость от времени этих величин предоставляет всю необходимую информацию для вычисления пройденного телом пути. Рассмотрим подробнее в статье, что такое ускорение тангенциальное и нормальное ускорение.

В физике

Прежде чем рассматривать для механического движения ускорение нормальное и тангенциальное ускорение, познакомимся с самим физическим понятием. Определение ускорения является достаточно простым. В физике под ним понимают характеристику изменения скорости. Последняя является векторной величиной, определяющей быстроту изменения координат движущегося объекта в пространстве. Скорость измеряется в метрах в секунду (расстояние, пройденное за единицу времени). Если ее обозначить символом v¯, тогда математическое определение ускорения a¯ будет выглядеть так:

Это равенство определяет так называемое полное мгновенное ускорение. Мгновенным оно называется потому, что характеризует изменение скорости лишь в данный момент времени.

Если движение является равноускоренным, то есть в течение длительного времени ускорение не меняет своего модуля и направления, тогда можно записать следующую формулу для его определения:

Где Δt>>dt. Величина a¯ здесь называется средним ускорением, которое в общем случае отличается от мгновенного.

Ускорение измеряется в системе СИ в метрах в квадратную секунду (м/с 2 ).

Траектория движения и компоненты полного ускорения

Чаще всего тела в природе движутся по кривым траекториям. Примерами такого перемещения являются: вращение по своим орбитам планет, параболическое падение камня на землю, поворот автомобиля. В случае криволинейной траектории в любой момент времени скорость направлена по касательной к рассматриваемой точке траектории. Как при этом направлено ускорение?

Чтобы ответить на поставленный выше вопрос, запишем скорость тела в следующей форме:

Здесь ut¯ – вектор скорости единичный, индекс t означает, что он направлен по касательной к траектории (тангенциальная компонента). Символом v обозначен модуль скорости v¯.

Теперь, следуя определению ускорения, можно провести дифференцирование скорости по времени, имеем:

Таким образом, полное ускорение a¯ представляет собой векторную сумму двух компонент. Первое и второе слагаемое называются нормальным и тангенциальным ускорением точки. Подробнее рассмотрим каждую из этих компонент.

Ускорение тангенциальное

Запишем еще раз формулу для этой компоненты полного ускорения:

Это выражение позволяет описать свойства величины at¯:

  • Она направлена точно так же, как и сама скорость или противоположно ей, то есть по касательной к траектории. Об этом свидетельствует элементарный вектор ut¯.
  • Она характеризует изменение скорости по абсолютной величине, что отражает множитель dv/dt.

Эти свойства позволяют сделать важный вывод: для прямолинейного движения полное и тангенциальное ускорения – это одна и та же величина. В случае криволинейного перемещения полное ускорение всегда больше по модулю, чем тангенциальное. Когда рассматривают физические задачи на прямолинейное равноускоренное движение, то ведут речь именно об этой компоненте ускорения.

Ускорение нормальное

Рассматривая тему скорости, ускорения тангенциального и ускорения нормального, дадим характеристику последней величине. Запишем формулу для нее:

Чтобы записать явно правую часть равенства, воспользуемся следующими соотношениями:

Здесь dL – это пройденный телом путь за промежуток времени dt, r – радиус кривизны траектории. Первое выражение соответствует определению скорости, второе равенство следует из геометрических соображений. Пользуясь этими формулами, получаем конечное выражение для нормального ускорения:

То есть величина an¯ не зависит от изменения скорости, как тангенциальная компонента, а определяется исключительно ее модулем. Нормальное ускорение вдоль нормали к данному участку траектории направлено, то есть к центру кривизны. Например, во время движения по окружности вектор an¯ направлен к ее центру, поэтому нормальное ускорение называют часто центростремительным.

Если за изменение абсолютной величины скорости ответственно ускорение тангенциальное, то нормальная компонента ответственна за изменение вектора скорости, то есть она определяет траекторию перемещения тела.

Ускорение полное, нормальное и тангенциальное

Разобравшись с понятием ускорения и с его компонентами, приведем теперь формулу, которая позволяет определить полное ускорение. Поскольку рассмотренные компоненты направлены под углом 90 o друг к другу, то для определения абсолютной величины их векторной суммы можно использовать теорему Пифагора. Формула для полного ускорения имеет вид:

Читайте также:  Беспроводная зарядка для айфона belkin

Направление величины a¯ можно определить по отношению к вектору любой из компонент. Например, угол между a¯ и an¯ вычисляется так:

Учитывая приведенную выше формулу для модуля a¯, можно сделать вывод: при равномерном движении по окружности полное ускорение совпадает с центростремительным.

Решение задачи

Пусть тело движется по окружности радиусом 1 метр. Известно, что его скорость изменяется по следующему закону:

Необходимо определить ускорение тангенциальное и нормальное ускорение в момент t = 4 секунды.

Для тангенциального имеем:

Для того чтобы найти модуль ускорения нормального, сначала следует вычислить значение скорости в заданный момент времени. Имеем:

Теперь можно воспользоваться формулой для an:

Таким образом, мы определили все величины, которые требовалось найти для решения задачи.

Определить тангенциальное, нормальное и полное ускорение точки окружности диска для момента времени 10 с от начала движения, если радиус окружности 0.2 м, а угол между осью ОХ и радиус-вектором точки изменяется по закону: j=3–t+0.2t 3 .

По формулам и находим угловую скорость и угловое ускорение точки: ω= –1+0.2 . 3t 2 , ε=0.6 . 2t. Из формулы связи углового и линейного тангенциального ускорения найдем: aτ=R . ε=R . (0.6 . 2t)=1.2Rt=1.2 . 0.2 . 10=24 м/с 2 .

Нормальное ускорение найдем из формулы , где скорость v=R . ω=R . (–1+0.2 . 3t 2 )=R . (0.6t 2 –1). Подставим численные значения: v=0.2 . (0.6 . 10 2 –1)=11.8 м/с;

Теперь находим полное ускорение: .

31. Автомобиль движется по закруглению шоссе, имеющему радиус кривизны 50 м. Длина пути автомобиля выражается уравнением S=10+10t+0.5t 2 (путь – в метрах, время – в секундах). Найти скорость автомобиля, его тангенциальное, нормальное и полное ускорения через 5 с после начала движения.

32. Материальная точка движется по окружности радиуса 80 см по закону S=10t–0.1t 3 (путь в метрах, время в секундах). Найти скорость, тангенциальное, нормальное и полное ускорения через 2 с после начала движения.

33. По дуге окружности радиуса 10 м движется точка. В некоторый момент времени нормальное ускорение точки равно 5 м/с 2 , а вектор полного ускорения образует в этот момент с вектором нормального ускорения угол 60 0 . Найти скорость и тангенциальное ускорение точки.

34. Зависимость пройденного телом пути от времени дается уравнением S=A+Bt+Ct 2 +Dt 3 , где С=0.14 м/с 2 , D=0.01 м/с 3 . Через сколько времени после начала движения ускорение тела будет равно 1 м/с 2 ? Чему равно среднее ускорение тела за этот промежуток времени?

35. Тело брошено со скоростью 14.7 м/с под углом 30 0 к горизонту. Найти нормальное и тангенциальное ускорение тела через 1.25 с после начала движения.

36. Тело брошено горизонтально со скоростью 15 м/с. Найти нормальное и касательное ускорение через 1 с после начала движения.

37. Тело брошено со скоростью 10 м/с под углом 45 0 к горизонту. Найти радиус кривизны траектории тела через 1 с после начала движения.

38. Тело брошено со скоростью v под углом a к горизонту. Найти величины v и a, если наибольшая высота подъема тела 3 м и радиус кривизны траектории тела в верхней точке траектории 3 м.

39. Колесо, вращаясь равноускоренно, достигло угловой скорости 20 рад/с через 10 оборотов после начала вращения. Найти угловое ускорение колеса.

40. Маховое колесо спустя 1 минуту после начала вращения приобретает скорость, соответствующую частоте 720 об/мин. Найти угловое ускорение колеса и число оборотов колеса за эту минуту. Вращение считать равноускоренным.

41. Вентилятор вращается со скоростью, соответствующей частоте 900 об/мин. После выключения вентилятор, вращаясь равнозамедленно, сделал до остановки 75 оборотов. Сколько времени прошло с момента выключения вентилятора до его остановки?

42. Точка движется по окружности радиусом 10 см с постоянным тангенциальным ускорением. Найти тангенциальное ускорение точки, если к концу пятого оборота после начала движения скорость точки стала 79.2 см/с.

43. Точка движется по окружности с постоянным тангенциальным ускорением. Найти нормальное ускорение точки через 20 с после начала движения, если к концу пятого оборота после начала движения линейная скорость точки равна 10 см/с.

44. Колесо радиусом 10 см вращается с постоянным угловым ускорением 3.14 рад/с 2 . Найти для точек на ободе колеса к концу первой секунды после начала движения угловую скорость; линейную скорость; тангенциальное ускорение; нормальное ускорение; полное ускорение.

45. Точка движется по окружности радиусом 2 см. Зависимость пути от времени дается уравнением S=0.1t 3 (путь – в метрах, время – в секундах). Найти нормальное и тангенциальное ускорения точки в момент, когда линейная скорость точки равна 0.3 м/с.

46. Колесо вращается с постоянным угловым ускорением 2 рад/с 2 . Через 0.5 с после начала движения полное ускорение колеса стало равно 13.6 см/с 2 . Найти радиус колеса.

47. Колесо вращается так, что зависимость угла поворота радиуса колеса от времени дается уравнением j=A+Bt+Ct 2 +Dt 3 , где B=1 рад/с, С=1 рад/с 2 , D=1 рад/с 3 . Найти радиус колеса, если известно, что к концу второй секунды движения нормальное ускорение точек, лежащих на ободе колеса, равно 3.46 м/с 2 .

Читайте также:  Вирус в браузере гугл хром как удалить

48. Маховое колесо, вращающееся с частотой 240 об/мин, останавливается в течение 30 с. Найти число оборотов, сделанных колесом до полной остановки.

49. На цилиндр, который может вращаться около горизонтальной оси, намотана нить, к концу которой привязан грузик. Двигаясь равноускоренно, грузик за 3 с опустился на 1.5 м. Определить угловое ускорение цилиндра, если его радиус равен 4 см.

50. Тело вращалось равноускоренно с начальной частотой 40 об/мин. После того, как совершилось 20 оборотов телом, частота увеличилась до 120 об/мин. Найти угловое ускорение и время, в течение которого изменялась частота.

51. Шкив радиусом 20 см приводится во вращение грузом, подвешенным на нити, постепенно сматывающейся со шкива. В начальный момент груз был неподвижен, а затем стал опускаться с ускорением 20 см/с 2 . Определить угловую скорость шкива в тот момент, когда груз пройдет путь 1 м.

52. Колесо, вращаясь равнозамедленно, при торможении уменьшило свою частоту за 1 минуту от 300 об/мин до 180 об/мин. Найти угловое ускорение колеса и число оборотов, сделанных им за это время. Через какое время колесо остановится?

53. Вал вращается со скоростью, соответствующей частоте 180 об/мин. С некоторого момента вал тормозится и вращается равнозамедленно с угловым ускорением, численно равным 3 рад/с 2 . Через сколько времени вал остановится? Сколько оборотов он сделает до остановки?

54. Точка движется по окружности радиусом 20 см с постоянным тангенциальным ускорением 5 см/с 2 . Через сколько времени после начала движения нормальное ускорение точки будет равно тангенциальному?

55. Найти угловое ускорение колеса, если известно, что через 2 с после начала равноускоренного движения вектор полного ускорения точки, лежащей на ободе, составляет угол 60 0 с направлением линейной скорости этой точки.

56. Колесо радиусом 0.1 м вращается так, что зависимость угла поворота радиуса колеса от времени дается уравнением j=A+Bt 2 +Ct 3 , где B=2 рад/с 2 , С=1 рад/с 3 . Для точек, лежащих на ободе колеса, найти через 2 с после начала движения: угловую скорость; линейную скорость; угловое ускорение; тангенциальное ускорение; нормальное ускорение; полное ускорение.

57. Колесо радиусом 5 см вращается так, что зависимость угла поворота радиуса колеса от времени дается уравнением j=A+Bt+Ct 2 +Dt 3 , где D=1 рад/с 3 . Найти для точек, лежащих на ободе колеса, изменение тангенциального ускорения за каждую секунду движения.

58. Колесо радиусом 30 см вращается так, что зависимость линейной скорости точек, лежащих на ободе колеса, от времени движения дается уравнением: v=3t+t 2 (скорость – в м/с, время – в секундах). Найти угол, составляемый вектором полного ускорения с радиусом колеса в момент времени 5 с после начала движения.

59. Поезд въезжает на закругленный участок пути с начальной скоростью 54 км/ч и проходит равноускоренно путь 600 м за время 30 с. Радиус закругления 1 км. Найти скорость и полное ускорение поезда в конце этого участка пути.

60. Камень брошен горизонтально со скоростью 10 м/с. Найти нормальное и тангенциальное ускорение камня и радиус кривизны траектории через 3 с после начала движения.

Не нашли то, что искали? Воспользуйтесь поиском:

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На этом уроке мы вспомним, что такое ускорение. Рассмотрим две его составляющие, тангенциальную и нормальную, и пример нахождения этих составляющих. А также решим две задачи из сборника для подготовки к Единому государственному экзамену на нахождение радиуса траектории в наивысшей точке.

Ускорение. Нормальная и тангенциальная составляющие ускорения

Механическое движение по характеру подразделяется на поступательное, вращательное и колебательное; по виду траектории – прямолинейное и криволинейное. Также механическое движение можно подразделять по характеру изменения скорости.

Физическая величина, которая определяет быстроту изменения скорости, называется ускорением. Математически ускорение определяется отношением изменения скорости к промежутку времени, за которое оно произошло (производная от скорости по времени):

Рис. 1. Тангенциальная и нормальная составляющие полного ускорения

Тангенциальная составляющая ускорения характеризует быстроту изменения величины (модуля) скорости. Тангенциальное ускорение всегда коллинеарно скорости.

1) Если тангенциальная составляющая ускорения сонаправлена со скоростью, то движение будет ускоренное (см. рис. 2).

Рис. 2. Тангенциальная составляющая ускорения сонаправлена со скоростью

2) Если тангенциальная составляющая ускорения противонаправлена скорости, то движение будет замедленным (см. рис. 3).

Читайте также:  Газовая поверхность встраиваемая рейтинг

Рис. 3. Тангенциальная составляющая ускорения противонаправлена скорости

Нормальная составляющая ускорения характеризует быстроту изменения скорости по направлению. Нормальное ускорение всегда перпендикулярно скорости и направлено к центру по радиусу траектории, по которой движется тело (см. рис. 4).

Рис. 4. Направление нормального ускорения

Величина нормального ускорения связана с радиусом траектории и со скоростью движения следующим соотношением:

При прямолинейном движении тело имеет только тангенциальное ускорение. Нормальное ускорение отсутствует, так как скорость тела по направлению остаётся неизменной (см. рис. 5).

Рис. 5. Прямолинейное движение

При криволинейном движении, как правило, тело имеет тангенциальную и нормальную составляющую ускорения (см. рис. 6).

Рис. 6. Криволинейное движение

Пример нахождения тангенциальной и нормальной составляющей ускорения

Рассмотрим движение тела, брошенного под углом к горизонту (см. рис. 7). Найдём составляющие ускорения в тот момент, когда скорость тела направлена под углом к горизонту.

Рис. 7. Траектория движения тела

Касательная к траектории в точке A – это направление скорости

Рис. 8. Проекции ускорения

На рисунке видно, что тангенциальная составляющая ускорения направлена против скорости, то есть скорость тела в данный момент уменьшается (см. рис. 8). Нормальная составляющая ускорения направлена перпендикулярно скорости, следовательно, скорость в следующий момент наклонится в сторону .

Величины составляющих ускорения находим геометрически.

Рис. 9. Геометрическое определение величины составляющих ускорения

Угол A в треугольнике разложения на составляющие (треугольник выделен жёлтым на рисунке) имеет взаимно перпендикулярные стороны с углом Следовательно, тангенциальная составляющая равна: .

Нормальная составляющая ускорения равна: .

Задача 1

Обод радиусом 1 метр катится по горизонтальной поверхности со скоростью 10 м/с. Найти радиус траектории точки поверхности обода при прохождении наивысшего положения.

Дано: Найти: .

Решение

Рис. 10. Иллюстрация к задаче

На рисунке изображён обод, который катится по горизонтальной поверхности со скоростью Скорость точки A относительно горизонтальной поверхности при движении обода без проскальзывания равна нулю. Это объясняется тем, что она движется вместе с ободом по горизонтали со скоростью Скорости точек в верхней части обода равны: . Эта скорость будет направлена по горизонтали в сторону движения обода.

С центром обода у всех точек, лежащих на её поверхности, связано нормальное ускорение, так как оно направлено перпендикулярно скорости движения точки по окружности в любой момент времени.

Ускорение остаётся неизменным для всех точек поверхности обода, так как при переходе к системе отсчёта, связанной с Землёй, центр обода движется равномерно: .

Тогда для точки

В этой задаче заданное значение начальной скорости было лишним. Избыточные данные часто включают в задания ЕГЭ по физике.

Ответ: .

Задача 2

После удара футбольный мяч за 2 с пролетел 40 м и упал на землю. Чему равен радиус траектории мяча в верхней точке траектории?

Дано: Найти: .

Решение

Рис. 11. Иллюстрация к задаче

На рисунке изображена траектория полёта мяча (см. рис. 11). Точка A – верхняя точка траектории, скорость мяча в которой Скорость в точке A – это горизонтальная составляющая скорости, которая в процессе всего движения остаётся неизменной. Поэтому скорость в точке A равна отношению всего пути, пройденного по горизонтали, ко времени: .

Следовательно, радиус траектории в верхней точке равен: .

Ответ: .

Нахождение закона изменения скорости от времени

Сведения об ускорении необходимы для того, чтобы найти закон изменения скорости от времени. Например, зависимость скорости от времени находится как неопределённый интеграл от ускорения по времени: , где C – постоянная интегрирования.

При равноускоренном движении При

  1. Вопросы в конце параграфа 13 (стр. 46); – Касьянов В.А. Физика. 10 кл. (см. список рекомендованной литературы) (Источник)
  2. Камень брошен со скоростью 20 м/c под углом Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *