0

Большинство современных пк являются аналого цифровыми машинами

При рассмотрении современных компьютеров наиболее важной особенностью, отличающей их от ранних вычислительных устройств, является то, что при соответствующем программировании любой компьютер может подражать поведению любого другого (хоть эта возможность и ограничена, к примеру, вместимостью средств хранения данных или различием в скорости). Таким образом, предполагается, что современные машины могут эмулировать любое вычислительное устройство будущего, которое когда-либо может быть создано. В некотором смысле эта пороговая способность полезна для различия компьютеров общего назначения и устройств специального назначения. Определение «компьютер общего назначения» может быть формализовано в требовании, чтобы конкретный компьютер был способен подражать поведению универсальной машины Тьюринга. Первым компьютером, удовлетворяющим такому условию, считается машина Z3, созданная немецким инженером Конрадом Цузе в 1941 году (доказательство этого факта было проведено в 1998 году).

Современные компьютеры используют весь спектр конструкторских решений, разработанных за всё время развития вычислительной техники. Эти решения, как правило, не зависят от физической реализации компьютеров, а сами являются основой, на которую опираются разработчики. Ниже приведены наиболее важные вопросы, решаемые создателями компьютеров:

Цифровой или аналоговый.

Фундаментальным решением при проектировании компьютера является выбор, будет ли он цифровой или аналоговой системой. Если цифровые компьютеры работают с дискретными численными или символьными переменными, то аналоговые предназначены для обработки непрерывных потоков поступающих данных. Сегодня цифровые компьютеры имеют значительно более широкий диапазон применения, хотя их аналоговые собратья все ещё используются для некоторых специальных целей. Следует также упомянуть, что здесь возможны и другие подходы, применяемые, к примеру, в импульсных и квантовых вычислениях, однако пока что они являются либо узкоспециализированными, либо экспериментальными решениями.

Примерами аналоговых вычислителей, от простого к сложному, являются: номограмма, логарифмическая линейка, астролябия, осциллограф, телевизор, аналоговый звуковой процессор, автопилот, мозг. (источник не указан 476 дней).

Среди наиболее простых дискретных вычислителей известен абак, или обыкновенные счёты, наиболее сложной из такого рода систем является суперкомпьютер.

Примером компьютера на основе десятичной системы счисления является первая американская вычислительная машина Марк I.

Важнейшим шагом в развитии вычислительной техники стал переход к внутреннему представлению чисел в двоичной форме. Это значительно упростило конструкции вычислительных устройств и периферийного оборудования. Принятие за основу двоичной системы счисления позволило более просто реализовывать арифметические функции и логические операции. Тем не менее, переход к двоичной логике был не мгновенным и безоговорочным процессом. Многие конструкторы пытались разработать компьютеры на основе более привычной для человека десятичной системы счисления. Применялись и другие конструктивные решения. Так, одна из ранних советских машин работала на основе троичной системы счисления, использование которой во многих отношениях более выгодно и удобно по сравнению с двоичной системой (проект троичного компьютера Сетунь был разработан и реализован талантливым советским инженером Н.П. Брусенцовым). электронный вычислительный компьютер

Под руководством академика Хетагурова Я.А. разработан «высоконадёжный и защищённый микропроцессор недвоичной системы кодирования для устройств реального времени», использующий систему кодирования 1 из 4 с активным нулём. В целом, однако, выбор внутренней системы представления данных не меняет базовых принципов работы компьютера – любой компьютер может эмулировать любой другой.

Хранение программ и данных.

Во время выполнения вычислений часто бывает необходимо сохранить промежуточные данные для их дальнейшего использования. Производительность многих компьютеров в значительной степени определяется скоростью, с которой они могут читать и писать значения в (из) памяти и её общей ёмкости. Первоначально компьютерная память использовалась только для хранения промежуточных значений, но вскоре было предложено сохранять код программы в той же самой памяти (архитектура фон Неймана, она же «принстонская»), что и данные. Это решение используется сегодня в большинстве компьютерных систем. Однако для управляющих контроллеров (микро-ЭВМ) и сигнальных процессоров более удобной оказалась схема, при которой данные и программы хранятся в различных разделах памяти (гарвардская архитектура).

Учёные и инженеры могут с выгодой использовать давно заброшенный подход к вычислениям


Этот аналоговый механический компьютер использовался для прогноза приливов. Он был известен, как «старый латунный мозг», или, более официально, «Машина предсказания приливов №2». Она служила Прибрежной и геологической службе США для подсчёта таблиц приливов начиная с 1912 года, и не уходила на пенсию вплоть до 1965, когда её заменили электронным компьютером.

Когда Нил Армстронг и Базз Олдрин опустились на Луну в 1969 году в рамках миссии Аполло-11, это, вероятно, было величайшим достижением в инженерной истории человечества [не считая, конечно, запуска первого спутника и первого человека в космос, первого выхода человека в открытый космос, а также создания автоматического космического корабля многоразового использования / прим. перев.]. Многие люди не отдают себе отчёта в том, что важным ингредиентом в успехе миссий Аполло и их предшественников были аналоговые и гибридные (аналогово-цифровые) компьютеры, которые НАСА использовала для симуляций, а в некоторых случаях, даже для управления полётами. Многие из живущих сегодня людей даже не слышали об аналоговых компьютерах, считая, что компьютеры, по определению, являются цифровыми устройствами.

Если аналоговые и гибридные компьютеры были такими ценными полстолетия назад, почему они исчезли почти бесследно? Это связано с ограничениями технологий 1970-х: по сути, их слишком сложно было разрабатывать, строить, управлять и поддерживать. Но аналоговые и гибридные аналого-цифровые компьютеры, построенные при помощи современных технологий, не имели бы таких недостатков, поэтому сейчас идут многочисленные исследования по аналоговым вычислениям в областях машинного обучения, машинного интеллекта и биомиметических схем.

В статье я сконцентрируюсь на другом применении аналоговых и гибридных компьютеров: эффективных научных вычислениях. Я считаю, что современные аналоговые компьютеры могут дополнить своих цифровых коллег в решении уравнений, относящихся к биологии, динамике жидкостей, предсказанию погоды, квантовой химии, физики плазмы и ко многим другим областям науки. И вот как эти необычные компьютеры могли бы это сделать.

Аналоговый компьютер — это физическая система, настроенная так, чтобы работать в соответствии с уравнениями, идентичными тем, что вы хотите решить. Вы назначаете начальные условия, соответствующие той системе, которую хотите исследовать, а потом позволяете переменным в аналоговом компьютере эволюционировать со временем. В результате у вас получается решение соответствующих уравнений.

Возьмём до нелепости простой пример: шланг с водой и ведро можно расценить, как аналоговый компьютер, производящий интегральные вычисления. Отрегулируйте объём текущей в шланге воды, чтобы соответствовать интегрируемой вами функции. Направьте поток в ведро. Решением задачи будет количество воды в ведре.

И хотя некоторые из аналоговых компьютеров реально использовали текущие жидкости, самые ранние из них были механическими устройствами, содержащими вращающиеся колёса и шестерёнки. В их число входит и дифференциальный анализатор Ванневара Буша 1931 года, созданный на принципах, рождённых ещё в XIX веке, в основном на базе работ Уильяма Томсона (ставшего впоследствии лордом Кельвином) и его брата Джеймса, разрабатывавшего механические аналоговые компьютеры для расчёта приливов. Аналоговые компьютеры этого типа ещё долго использовались для таких задач, как управление пушками на линкорах. К 1940-м для этого начали применяться и электронные аналоговые компьютеры, хотя параллельно механические компьютеры продолжали оставаться в строю. И не кто иной, как Клод Шеннон, отец формальной информационной теории, опубликовал в 1941 году плодотворное теоретическое исследование аналоговых вычислений.

Примерно с тех времён началась обширная разработка аналоговых компьютеров в США, СССР, Германии, Британии, Японии и т.д. Их выпускали многие производители, например, Electronic Associates Inc., Applied Dynamics, RCA, Solartron, Telefunken и Boeing. Изначально они использовались в разработке снарядов и самолётов, а также в полётных симуляторах. Естественно, основным клиентом была НАСА. Но их применение вскоре распространилось и на другие области, включая управление ядерным реактором.

Читайте также:  Восстановить данные с флешки бесплатная программа


Этот электронный аналоговый компьютер PACE 16-31R, изготовленный Electronic Associates Inc., был установлен в лаборатории реактивного полёта Льюиса в НАСА (сейчас это Исследовательский центр им. Гленна) в Кливленде в середине 1950-х. Такие аналоговые компьютеры использовались, кроме прочего, для таких комических программ НАСА, как Меркурий, Джемини, Аполло.

Изначально в электронных аналоговых компьютерах были сотни или тысячи электронных ламп, которые позднее заменили транзисторами. Сначала их программировали путём ручной установки контактов между различными компонентами на специальной панели. Это были сложные и причудливые машины, для запуска им требовался специально обученный персонал — всё это сыграло роль в их кончине.

Ещё одним фактором послужило то, что к 1960-м цифровые компьютеры развивались семимильными шагами благодаря многим их преимуществам: простому программированию, алгоритмической работе, простоте хранения, высокой точности, возможности обрабатывать задачи любого объёма при наличии времени. Быстродействие цифровых компьютеров быстро увеличилось за то десятилетие, а также за следующее, когда была разработана технология МОП (металл-оксид-полупроводник) для интегральных схем, позволившая размещать на одном чипе большое количество транзисторов, работающих цифровыми переключателями.

Изготовители аналоговых компьютеров вскоре включили цифровые схемы в свои системы, что породило гибридные компьютеры. Но было уже поздно: аналоговую часть этих машин нельзя было интегрировать на крупных масштабах, используя технологии разработки и производства того времени. Последний крупный гибридный компьютер сделали в 1970-х. Мир перешёл на цифровые компьютеры и больше не оглядывался.

Сегодня технология аналоговых МОП чрезвычайно продвинулась: её можно найти в приёмных и передающих схемах смартфонов, в сложных биомедицинских устройствах, во всяческой потребительской электронике, и во множестве умных устройств, из которых состоит интернет вещей. Аналоговые и гибридные компьютеры, построенные с использованием такой продвинутой современной технологии, могли бы очень сильно отличаться от существовавших полстолетия назад.

Но к чему вообще рассматривать аналоговую электронику в применении к вычислениям? Дело в том, что обычные цифровые компьютеры, пусть и мощные, могут уже подбираться к своему пределу. Каждое переключение цифровой схемы потребляет энергию. Миллиарды транзисторов на чипе, переключающиеся на гигагерцовых скоростях, вырабатывают огромное количество тепла, которое необходимо как-то удалять, пока оно не привело к критичной температуре. На YouTube легко находятся видео с демонстрацией того, как пожарить яйцо на некоторых современных цифровых компьютерных чипах.

Энергоэффективность особенно важна для научных вычислений. В цифровом компьютере течение времени необходимо аппроксимировать при помощи последовательности из дискретных шагов. При решении определённых сложных дифференциальных уравнений требуется использовать особо малые шаги, чтобы гарантировать получение решения в результате работы алгоритма. Это значит, что для этого требуется огромное количество вычислений, отнимающих много времени и потребляющих много энергии.

Около 15 лет назад я задумался: сможет ли аналоговый компьютер, разработанный при помощи современных технологий, предложить что-то ценное? Чтобы ответить на этот вопрос, Гленн Кован [Glenn Cowan] — тогда аспирант, которым я руководил в Британской Колумбии, а сейчас — профессор в Университете Конкордии в Монреале — разработал и создал аналоговый компьютер на одном чипе. Он содержал аналоговые интеграторы, умножители, генераторы функций и другие блоки, скомпонованные в стиле программируемой пользователем вентильной матрицы. Различные блоки были соединены морем проводов, которые можно было настраивать так, чтобы они создавали контакты после изготовления чипа.


Многие научные задачи требует решения систем из связанных дифференциальных уравнений. Для простоты рассмотрим два уравнения с двумя переменными x1 и x2. Аналоговый компьютер находит x1 и x2, используя схему, в которой ток, идущий по двум проводам, подчиняется тем же самым уравнениям. При использовании подходящего контура токи в двух проводах будут представлять решение изначальных уравнений.


Для этого нужны аналоговые интеграторы, блоки разветвлений, источники постоянного тока (суммирование токов требует простого объединения проводов). Для решения нелинейных дифференциальных уравнений аналоговый компьютер на чипе использует схемы непрерывного времени для формирования блоков, способных создавать произвольные функции (розовый)


Получается, что аналоговый компьютер общего назначения можно создать на основе программируемой пользователем вентильной матрицы, содержащей множество аналоговых элементов, работающих под цифровым управлением. Каждая горизонтальная и вертикальная серая полоска обозначает несколько проводов. Когда требуется точность повыше, результаты работы аналогового компьютера можно скормить цифровому для уточнения.

Цифровое программирование позволило объединить вход заданного аналогового блока с выходом другого, и создать систему, управляемую уравнением, которое нужно решить. Таймер не использовался: напряжение и токи развивались непрерывно, а не дискретными шагами. Такой компьютер мог решать сложные дифференциальные уравнения с одним независимым переменным с точностью порядка нескольких процентов.

Для некоторых приложений такой ограниченной точности бывает достаточно. В случаях, когда такой результат слишком груб, его можно скормить цифровому компьютеру для уточнения. Поскольку цифровой компьютер начинает с очень хорошей догадки, итогового результата можно достичь за время в 10 раз меньшее, что во столько же раз уменьшает и энергопотребление.

Недавно в Британской Колумбии двое студентов, Нинг Гуо [Ning Guo] и Йипен Хуанг [Yipeng Huang], Мингу Сеок [Mingoo Seok], Симха Сетумадхаван [Simha Sethumadhavan] и я создали аналоговый компьютер на одном чипе второго поколения. Как и в случае с ранними аналоговыми компьютерами, все блоки нашего устройства работали одновременно, и обрабатывали сигналы таким образом, который потребовал бы от цифрового компьютера параллельной архитектуры. Теперь у нас есть более крупные чипы, состоящие из нескольких копий нашего дизайна второго поколения, способные решать более крупные задачи.

Новая схема нашего аналогового компьютера боле эффективна в потреблении энергии и легче спаривается с цифровыми компьютерами. Такому гибриду доступны преимущества обоих миров: аналогового для примерных вычислений с высокой скоростью и малым энергопотреблением, и цифрового для программирования, хранения и высокоточных вычислений.

Наш последний чип содержит множество контуров, использованных в прошлом для аналоговых вычислений: например, интеграторы и мультипликаторы. Ключевым компонентом нашей новой схемы является новый контур, способный непрерывно вычислять произвольные математические функции. И вот, почему это важно.

Цифровые компьютеры работают с сигналами, принимающими всего два вида уровней напряжения, представляющих значения 0 или 1. Конечно, при переходе между этими двумя состояниями сигнал должен принимать и промежуточные значения. Типичная цифровая схема обрабатывает сигналы периодически, после того, как напряжения стабилизировались на уровнях, чётко представляющих 0 или 1. Эти схемы работают при помощи системного таймера с периодом, достаточным для того, чтобы напряжение переключилось из одного стабильного состояния в другое до того, как начнётся следующий раунд обработки. В результате такая схема выдаёт последовательность двоичных значений, по одному за каждый момент времени.

Наш генератор функций вместо этого работает с разработанным нами подходом, который мы назвали цифровой процесс непрерывного времени. В нём появляются бестаймерные двоичные сигналы, которые могут менять значение в любой момент, а не по чётко определённым часам. Мы построили конвертеры из аналога в цифру и из цифры в аналог, а также цифровую память, способные обрабатывать такие цифровые сигналы непрерывного времени.

Мы можем скормить аналоговый сигнал в такой конвертер из аналога в цифру, и он переведёт его в двоичное число. Это число можно использовать для поиска хранящегося в памяти значения. Выходное значение затем скармливается в преобразователь из цифры в аналог. Комбинация таких схем непрерывного времени даёт генератор функций с аналоговыми входом и выходом.


Автор с коллегами использовали современные технологии производства для упаковки мощного аналогового компьютера в небольшой корпус

Мы использовали наш компьютер для решения разных сложных дифференциальных уравнений с точностью до нескольких процентов. Это нельзя сравнить с обычным цифровым компьютером. Но точность — это ещё не всё. Во многих случаях примерных значений достаточно для работы. Примерное вычисление — намеренное ограничение точности вычислений — иногда используется и в цифровых компьютерах, к примеру, в таких областях, как машинное обучение, компьютерное зрение, биоинформатика и обработка больших данных. Это имеет смысл, когда, как это часто бывает, сами входные данные имеют погрешности.

Читайте также:  Блокировка телефона при утере

Поскольку ядро нашего компьютера аналоговое, при необходимости он может напрямую соединяться с датчиками и силовыми приводами. Высокая скорость позволяет ему взаимодействовать с пользователем в реальном времени в вычислительных задачах, которые в обычном режиме были бы чрезвычайно медленными.

Конечно, у нашего подхода к вычислениям есть недостатки. Одна из проблем состоит в том, что особенно сложные задачи требуют множества аналоговых вычислительных блоков, из-за чего чип получается крупным и дорогим.

Один из способов решения такой проблемы — делить вычислительную задачу на мелкие подзадачи, каждая из которых будет решаться аналоговым компьютером, работающим под управлением цифрового. Такие вычисления уже не будут полностью параллельными, но, по крайней мере, они будут возможными. Исследователи изучали такой подход несколько десятилетий назад, когда гибридные компьютеры ещё были в моде. Они не ушли далеко, поскольку этот вид компьютеров был заброшен. Так что эта технология требует дальнейшей разработки.

Другая проблема состоит в том, что сложно настроить произвольные соединения между удалёнными блоками схемы на большом аналоговом чипе. Сеть контактов может приобрести непомерно большой размер и сложность. Однако некоторые научные задачи потребуют такого рода соединений, чтобы их можно было решать на аналоговом компьютере.

Это ограничение могут помочь обойти трёхмерные технологии производства. Но пока аналоговое ядро нашего гибридного дизайна лучше всего подходит для тех случаев, где требуется локальная связность — к примеру, для симуляции набора молекул, взаимодействующих только с молекулами, находящимися недалеко от них.

Ещё одна проблема — сложность в реализации функций многих параметров и связанная с ней проблема малой эффективности обработки дифференциальных уравнений в частных производных. В 1970-х велась разработка нескольких технологий для решения подобных уравнений на гибридных компьютерах, и мы планируем начать с того места, на котором закончились более ранние разработки.

Также у аналога есть недостатки с увеличением точности. Точность цифровой схемы можно увеличить, просто добавляя биты. Увеличение точности аналогового компьютера требует использования гораздо большей площади чипа. Именно поэтому мы концентрировались на приложениях с низкой точностью.

Я упомянул, что аналоговые вычисления могут ускорять подсчёты и экономить энергию, и хочу добавить подробностей. Аналоговая обработка на компьютере того типа, что сделали мы с коллегами, обычно занимает одну миллисекунду. Решение дифференциальных уравнений с одной производной требуют меньше 0,1 мкДж энергии. Такой чип при обычной технологии производства (65 нм CMOS) займёт область размером в квадратный миллиметр. Уравнения с двумя производными отнимают в два раза больше энергии и площади чипа, и так далее; время же на их решение остаётся неизменным.

Для некоторых критических областей применения с неограниченным бюджетом можно даже рассмотреть интеграцию масштаба подложки — всю кремниевую подложку целиком можно использовать, как один гигантский чип. Подложка в 300 мм позволит разместить на чипе более 100 000 интеграторов, что позволит симулировать систему из 100 000 спаренных нелинейных динамических уравнений первого порядка, или 50 000 второго порядка, и так далее. Это может оказаться полезным для симуляции динамики большого массива молекул. Время решения всё равно будет исчисляться миллисекундами, а рассеивание энергии — десятками ватт.

Только эксперименты могут подтвердить, что компьютеры такого типа будут реально полезными, и что накопление аналоговых ошибок не помешает им работать. Но если они заработают, результаты превзойдут всё, на что способны современные цифровые компьютеры. Для них некоторые из сложных задач такого порядка требуют огромные количества энергии или времени на решение, способного растянуться на дни или даже недели.

Конечно, для того, чтобы найти ответы на эти и другие вопросы, потребуется провести ещё много исследований: как распределять задачи между аналоговой и цифровой частью, как разбивать большие задачи на мелкие, как комбинировать итоговые решения.

В поисках этих ответов мы и другие исследователи, занявшиеся аналоговыми компьютерами, можем получить большое преимущество, воспользовавшись работой очень умных инженеров и математиков, проведённой полстолетия назад. Нам не нужно пытаться заново изобрести колесо. Мы должны использовать полученные ранее результаты как трамплин, и продвигаться гораздо дальше. По крайней мере, мы надеемся на это, и если не попробуем, то никогда не узнаем ответ.

Янис Цивидис — профессор электротехники в Колумбийском университете

Сейчас почти в каждом доме стоит компьютер для работы, учебы, развлечений или всего сразу. Современный ПК появился благодаря электронно-вычислительной машине, поэтому под ЭВМ часто подразумевают старую версию компьютера. Но мало кто знает о существовании АВМ.

Понятие

АВМ – это аналоговый компьютер, являющийся неким прообразом вычислительной машины. Он работает с числовыми данными, которые разрабатываются благодаря аналоговым физическим параметрам. Сюда можно отнести показатели скорости, длины, силы, давления и пр.

Помимо алгоритмов работы аналоговый компьютер отличается от ЭВМ тем, что лишен программы управления. То есть нет специальных команд, которые бы помогали ему справляться с задачами. В этом случае задание ставится перед машиной самим внутренним устройством и установленными настройками.

Начало истории

Прежде чем появился самый первый компьютер в мире, устройству пришлось пройти сложный путь. Считается, что аналоговый аппарат, который дал развитие подобным устройствам, впервые был разработан в 100 году до нашей эры. Антикитерский механизм нашли спустя 2 тысячи лет. Прибор получил свое название благодаря месту, где был найден – остров Антикитера.

Также довольно популярным считается астролябия. Это изобретение было известным в научных кругах среди астрологов и астрономов еще до нашей эры, помогало определять местоположение звезд на небе и разбираться в длительности суток.

Активные разработки

С XVII века начинается активная разработка аналоговых устройств. Так появляется логарифмическая линейка, которую, хотя и не назовешь компьютером, все же можно отнести к аналоговому вычислительному прибору.

Буквально через 20 лет появляется «паскалина», а после машина Морленда. В XIX веке изобретен планиметр, который помогал в то время находить площадь кривой. Позже — интегратор, который не похож на аналоговый компьютер, все же является прибором, легко высчитывающим интегралы.

В XX веке активной разработкой начали заниматься российские ученые. Например, Алексей Крылов придумал прибор, который помогал решать дифференциальные уравнения. Позже это изобретение использовали для проектирования кораблей.

Спустя 8 лет было создано оборудование на основе того, что придумал Крылов, но занимающиеся интегрированием дифференциальных уравнений. Вскоре появляется механическое интегрирующее изобретение и электродинамический счетно-аналитический прибор.

Механическая АВМ стала известна благодаря Конраду Цузе, который создал Z1. С появлением усилителя АВМ, не имеющие движущихся частей, начали работать на постоянном токе.

СССР также занималась разработками. Поэтому уже в 1949 году были выпущены АВМ на постоянном токе. Тут же появляется первый нейрокомпьютер-перцептрон. Все эти изобретения привели к тому, что в 60-е годы XX века аналоговые компьютеры стали главным помощником ученых по всему миру.

Работа устройства

Непросто точно определить, когда же появился самый первый компьютер в мире. В этом случае чаще всего вспоминают IBM, разработанный в Гарварде в 1941 году. А вот на этот счет об АВМ никакой подобной информации нет. Но сейчас это уже не так важно. Намного интереснее принцип действия.

Аналоговый компьютер занимается вычислениями, все цифровые данные могут меняться в зависимости от получаемых результатов. Последние представлены графиками, которые обычно отображены на бумаге или дисплее. Также результат можно получить в виде электрического сигнала. Он параллельно контролирует процесс вычисления и функционирование оборудования.

Особенности

Аналоговая вычислительная машина с легкостью справляется с автоматической регуляцией разных процессов производства. Это связано с тем, что АВМ быстро реагирует на любые изменения данных. Поэтому подобное устройство будет выгодно во время научных исследований, когда входные значения могут меняться во время процесса.

Читайте также:  Для того чтобы предотвратить

АВМ может стать полезна в науке, которая не требует дорогих электроприборов. Устройствам достаточно уметь имитировать изучаемые процессы. Иногда подобная машина нужна в том случае, чтобы решать задачи, не требующие такой точности вычислений, как в случае с задачами для ЭВМ.

Электронные аналоговые компьютеры легко справляются с дифференциальными уравнениями, интегрированиями и пр. Чтобы решить подобные задачи, достаточно использовать специальные схемы и узлы. В случае с АВМ подобных команд не требуется, поэтому работа этого устройства несколько проще.

Аналоговый блок

В описании аналогового компьютера должны присутствовать его элементы. В операционный блок входят такие детали, которые заняты одной из задач. Всех их можно объединить в систему, чтобы работать над одной операцией по определенной модели.

Блоки АВМ можно поделить на несколько групп:

В линейную группу входят детали, которые занимаются математическими операциями. К нелинейной группе относят блоки, работающие с нелинейной зависимостью функции от разных переменных. Логическая группа содержит элементы непрерывной, дискретной логики.

Существует несколько видов аналоговых компьютеров, поэтому их состав может несколько отличаться от имеющихся вариантов.

Базовые элементы

Помимо вышеописанных блоков, есть основные элементы, которые имеют свои определенные параметры. Существует емкостное ЗУ, которое основывается на конденсаторных свойствах и может хранить напряжение.

Делитель напряжения также относится к ЗУ. В этом случае на работу влияют углы поворота реостатов. Они зависят от запоминаемых величин. К основным блокам относят запоминающую пару, которая часто представлена операционным усилителем. Один может функционировать в отслеживании входного сигнала, второй – в хранении.

Характеристика

Как у любого устройства, у аналогового компьютера есть характеристики. Но самая основная – добротность. Эта обобщенный параметр машины, который имеет определенную формулу. Некоторые значения зависят от уровня помех, также на них влияют ошибки и точности.

Разновидности

Как уже упоминалось ранее, АВМ может быть разных типов. Но в целом каждый вариант можно отправить в одну из двух групп:

  • специализированную – для узких специальных задач;
  • универсальную – для любых вариант заданий.

Далее все аналоговые компьютеры можно распределить на зависимые от разновидности рабочего тела, по конструктивным признакам и по типу функционирования.

Тип рабочего тела

Возможности аналогового компьютера определили его тип. Но не только функционирование влияет на дифференциацию устройств. Все также зависит от типа рабочего тела. Так, встречаются:

  • механические;
  • пневматические;
  • гидравлические;
  • электрические;
  • комбинированные;
  • электромеханические.

К механическому типу относят такие устройства, которые имеют механические перемещения. Из-за особенностей этого варианта машины необходимо масштабировать переменные, а также вести силовой расчет конструкции и мертвых ходов.

Этот тип имеет свои достоинства и недостатки. Машина надежная и справляется с различными математическими задачами. Вместе с тем имеет высокую стоимость, непростой механизм разработки и крупные размеры.

Пневматический вид работает с показателями давления воздуха. Для получения результатов необходимо обзавестись построенной сетью. В составе этой машины часто можно увидеть дроссели, емкости и мембраны.

Этот тип АВМ практически не имеет каких-либо погрешностей. Сейчас часто его можно встретить в промышленности, которая требует повышенной вибрационной стойкости и работе при перепадах температур.

Гидравлический тип работает с дифференциальными уравнениями, которые связаны с протеканием воды. Ранее эти машины можно было встретить во многих фирмах, до 80-х годов XX века. Сейчас есть лишь две гидравлические АВМ, которые находятся в музее.

По аналогии можно догадаться, что электрические устройства берут за показатели электрическое напряжение постоянного тока. Популярны благодаря надежным свойствам, скорости работы, удобному регулированию и точным конечным данным.

Электромеханический тип имеет механические и электрические переменные величины. Для машины этого вида характерны вращающиеся трансформаторы и тахогенераторы. Устройство имеет скользящие контакты, поэтому менее надежно, чем предыдущие варианты.

Конструктивные признаки

АВМ матричного типа имеет отдельные элементы, которые объединяют строго в группы по определенным признакам. Этот вариант подходит для создания дифференциальных уравнений. Но выполнение процессов нужно настраивать определенным образом.

Группы, которые имеют определенные признаки, работают каждая со своим заданием. Для корректного исследования нужно использовать масштаб. Этот тип имеет низкую эффективность.

Структурный тип АВМ представлен устройствами, имеющими вычислительные блоки. В этом случае они объединены не строго, а благодаря задачам, которые нужны для разбора операции. Рассчитана машина на математическое моделирование.

Функционирование

В эту группу относят устройства:

Быстрый тип настроен так, что этапы решения процессов повторяются в автоматическом режиме. Это сделано благодаря системе коммутации. Частота повторений зависит от характеристик деталей. Для работы с подобной скоростью требуется сложная конструкция. Преимуществом такой машины является возможность наблюдения за результатами экспериментов.

Медленный тип имеет однократное действие. Решение обычных процессов в этом случае может занимать от нескольких секунд до нескольких минут. Результат исследований можно увидеть только после окончания всех циклов.

Итеративная АВМ использует для решения итерационный способ. Машина подобного типа позволяет управлять ходом эксперимента в определенные отрезки времени.

Использование машин

Электронные аналоговые компьютеры известны уже давно, поэтому прошли определенную стадию совершенствования. Эти устройства основаны на задании физических параметров элементов. Обычно этот процесс происходит за счет включения и исключения некоторых блоков из системы.

До того как АВМ достигла пика своего развития, подобные устройства применялись в авиации и ракетной технике. Машины в этом случае помогали быстро обрабатывать данные и формировать сигналы для управления. Так стали известны автопилоты и более сложные системы управления полетами.

В автомобиле также можно найти аналоговую систему. Здесь ею является трансмиссия. Когда вращающий момент изменяется, жидкость меняет давление в гидроприводе. Таким образом происходит определенный коэффициент передачи.

Как уже упоминалось ранее, часто АВМ относят к узкоспециальным устройствам, поэтому их применяют для особых задач. Ранее был известен кулачковый механический аналоговый прибор. Его использовали в паровозостроении.

Механические компьютеры стали популярны в сфере космоса. Они помогали собирать данные благодаря индикаторам поверхности. До 2002 года был известен компьютер «Глобус», который справлялся с подобными задачами.

Есть аналоговые приборы и в военной технике. Они отвечают за управление огнем артиллерии, вычисления разных показателей во время сражений и т. п. В этом случае используются быстрые машины, которые легко справляются в условиях помех.

Примеры

Примеров аналоговых компьютеров за время их существования собралось множество. К примеру, в 1962 году была создана АВМ «Итератор». Она помогала решать особый вид задач, связанный с линейными уравнениями. Этот прибор функционирует благодаря особому способу, которым ученые обязаны Ньютону. Также «Итератор» справляется с линейными алгебраическими уравнениями.

Также миру известно целая серия устройств «МН». Название является аббревиатурой – «модель нелинейная». Изначально устройство должно было работать с задачами Коши. Самым ярким представителем линейки является «МН-18». Это средней мощности прибор, который может решать сложные динамические системы. Делает он это с помощью математического моделирования.

Также стоит упомянуть о Тележке Монте-Карло. Этот компьютер появился благодаря Энрико Ферми. Он был рассчитан на исследование движения нейтронов. Для получения результатов был взят за основу метод Монте-Карло.

ZAM – это очередное семейство аналоговых машин, которые были созданы в Варшаве. Их производство началось в 60-е годы XX века. Каждое устройство работало на основе двоичной системы исчисления.

Примечание

Принято считать, что мозг человека – самое популярное «аналоговое устройство». Ученые считают его сильным и работоспособным прибором, который когда-либо существовал. Конечно, с таким утверждением можно поспорить, поскольку работа импульсов осуществляется за счет дискретных сигналов. Но данные в нервной системе не имеют цифровой вид.

Цифровые и аналоговые компьютеры объединились, и получились нейрокомпьютеры. Это гибридные устройства, которые, хотя и относят к аналоговым, построены на цифровых ЭВМ. Эти машины работают аналогично клеткам мозга.

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

0

Большинство современных пк являются аналого цифровыми машинами

При рассмотрении современных компьютеров наиболее важной особенностью, отличающей их от ранних вычислительных устройств, является то, что при соответствующем программировании любой компьютер может подражать поведению любого другого (хоть эта возможность и ограничена, к примеру, вместимостью средств хранения данных или различием в скорости). Таким образом, предполагается, что современные машины могут эмулировать любое вычислительное устройство будущего, которое когда-либо может быть создано. В некотором смысле эта пороговая способность полезна для различия компьютеров общего назначения и устройств специального назначения. Определение «компьютер общего назначения» может быть формализовано в требовании, чтобы конкретный компьютер был способен подражать поведению универсальной машины Тьюринга. Первым компьютером, удовлетворяющим такому условию, считается машина Z3, созданная немецким инженером Конрадом Цузе в 1941 году (доказательство этого факта было проведено в 1998 году).

Современные компьютеры используют весь спектр конструкторских решений, разработанных за всё время развития вычислительной техники. Эти решения, как правило, не зависят от физической реализации компьютеров, а сами являются основой, на которую опираются разработчики. Ниже приведены наиболее важные вопросы, решаемые создателями компьютеров:

Цифровой или аналоговый.

Фундаментальным решением при проектировании компьютера является выбор, будет ли он цифровой или аналоговой системой. Если цифровые компьютеры работают с дискретными численными или символьными переменными, то аналоговые предназначены для обработки непрерывных потоков поступающих данных. Сегодня цифровые компьютеры имеют значительно более широкий диапазон применения, хотя их аналоговые собратья все ещё используются для некоторых специальных целей. Следует также упомянуть, что здесь возможны и другие подходы, применяемые, к примеру, в импульсных и квантовых вычислениях, однако пока что они являются либо узкоспециализированными, либо экспериментальными решениями.

Примерами аналоговых вычислителей, от простого к сложному, являются: номограмма, логарифмическая линейка, астролябия, осциллограф, телевизор, аналоговый звуковой процессор, автопилот, мозг. (источник не указан 476 дней).

Среди наиболее простых дискретных вычислителей известен абак, или обыкновенные счёты, наиболее сложной из такого рода систем является суперкомпьютер.

Примером компьютера на основе десятичной системы счисления является первая американская вычислительная машина Марк I.

Важнейшим шагом в развитии вычислительной техники стал переход к внутреннему представлению чисел в двоичной форме. Это значительно упростило конструкции вычислительных устройств и периферийного оборудования. Принятие за основу двоичной системы счисления позволило более просто реализовывать арифметические функции и логические операции. Тем не менее, переход к двоичной логике был не мгновенным и безоговорочным процессом. Многие конструкторы пытались разработать компьютеры на основе более привычной для человека десятичной системы счисления. Применялись и другие конструктивные решения. Так, одна из ранних советских машин работала на основе троичной системы счисления, использование которой во многих отношениях более выгодно и удобно по сравнению с двоичной системой (проект троичного компьютера Сетунь был разработан и реализован талантливым советским инженером Н.П. Брусенцовым). электронный вычислительный компьютер

Под руководством академика Хетагурова Я.А. разработан «высоконадёжный и защищённый микропроцессор недвоичной системы кодирования для устройств реального времени», использующий систему кодирования 1 из 4 с активным нулём. В целом, однако, выбор внутренней системы представления данных не меняет базовых принципов работы компьютера – любой компьютер может эмулировать любой другой.

Хранение программ и данных.

Во время выполнения вычислений часто бывает необходимо сохранить промежуточные данные для их дальнейшего использования. Производительность многих компьютеров в значительной степени определяется скоростью, с которой они могут читать и писать значения в (из) памяти и её общей ёмкости. Первоначально компьютерная память использовалась только для хранения промежуточных значений, но вскоре было предложено сохранять код программы в той же самой памяти (архитектура фон Неймана, она же «принстонская»), что и данные. Это решение используется сегодня в большинстве компьютерных систем. Однако для управляющих контроллеров (микро-ЭВМ) и сигнальных процессоров более удобной оказалась схема, при которой данные и программы хранятся в различных разделах памяти (гарвардская архитектура).

Учёные и инженеры могут с выгодой использовать давно заброшенный подход к вычислениям


Этот аналоговый механический компьютер использовался для прогноза приливов. Он был известен, как «старый латунный мозг», или, более официально, «Машина предсказания приливов №2». Она служила Прибрежной и геологической службе США для подсчёта таблиц приливов начиная с 1912 года, и не уходила на пенсию вплоть до 1965, когда её заменили электронным компьютером.

Когда Нил Армстронг и Базз Олдрин опустились на Луну в 1969 году в рамках миссии Аполло-11, это, вероятно, было величайшим достижением в инженерной истории человечества [не считая, конечно, запуска первого спутника и первого человека в космос, первого выхода человека в открытый космос, а также создания автоматического космического корабля многоразового использования / прим. перев.]. Многие люди не отдают себе отчёта в том, что важным ингредиентом в успехе миссий Аполло и их предшественников были аналоговые и гибридные (аналогово-цифровые) компьютеры, которые НАСА использовала для симуляций, а в некоторых случаях, даже для управления полётами. Многие из живущих сегодня людей даже не слышали об аналоговых компьютерах, считая, что компьютеры, по определению, являются цифровыми устройствами.

Если аналоговые и гибридные компьютеры были такими ценными полстолетия назад, почему они исчезли почти бесследно? Это связано с ограничениями технологий 1970-х: по сути, их слишком сложно было разрабатывать, строить, управлять и поддерживать. Но аналоговые и гибридные аналого-цифровые компьютеры, построенные при помощи современных технологий, не имели бы таких недостатков, поэтому сейчас идут многочисленные исследования по аналоговым вычислениям в областях машинного обучения, машинного интеллекта и биомиметических схем.

В статье я сконцентрируюсь на другом применении аналоговых и гибридных компьютеров: эффективных научных вычислениях. Я считаю, что современные аналоговые компьютеры могут дополнить своих цифровых коллег в решении уравнений, относящихся к биологии, динамике жидкостей, предсказанию погоды, квантовой химии, физики плазмы и ко многим другим областям науки. И вот как эти необычные компьютеры могли бы это сделать.

Аналоговый компьютер — это физическая система, настроенная так, чтобы работать в соответствии с уравнениями, идентичными тем, что вы хотите решить. Вы назначаете начальные условия, соответствующие той системе, которую хотите исследовать, а потом позволяете переменным в аналоговом компьютере эволюционировать со временем. В результате у вас получается решение соответствующих уравнений.

Возьмём до нелепости простой пример: шланг с водой и ведро можно расценить, как аналоговый компьютер, производящий интегральные вычисления. Отрегулируйте объём текущей в шланге воды, чтобы соответствовать интегрируемой вами функции. Направьте поток в ведро. Решением задачи будет количество воды в ведре.

И хотя некоторые из аналоговых компьютеров реально использовали текущие жидкости, самые ранние из них были механическими устройствами, содержащими вращающиеся колёса и шестерёнки. В их число входит и дифференциальный анализатор Ванневара Буша 1931 года, созданный на принципах, рождённых ещё в XIX веке, в основном на базе работ Уильяма Томсона (ставшего впоследствии лордом Кельвином) и его брата Джеймса, разрабатывавшего механические аналоговые компьютеры для расчёта приливов. Аналоговые компьютеры этого типа ещё долго использовались для таких задач, как управление пушками на линкорах. К 1940-м для этого начали применяться и электронные аналоговые компьютеры, хотя параллельно механические компьютеры продолжали оставаться в строю. И не кто иной, как Клод Шеннон, отец формальной информационной теории, опубликовал в 1941 году плодотворное теоретическое исследование аналоговых вычислений.

Примерно с тех времён началась обширная разработка аналоговых компьютеров в США, СССР, Германии, Британии, Японии и т.д. Их выпускали многие производители, например, Electronic Associates Inc., Applied Dynamics, RCA, Solartron, Telefunken и Boeing. Изначально они использовались в разработке снарядов и самолётов, а также в полётных симуляторах. Естественно, основным клиентом была НАСА. Но их применение вскоре распространилось и на другие области, включая управление ядерным реактором.

Читайте также:  Безлимитный интернет йота без ограничения трафика


Этот электронный аналоговый компьютер PACE 16-31R, изготовленный Electronic Associates Inc., был установлен в лаборатории реактивного полёта Льюиса в НАСА (сейчас это Исследовательский центр им. Гленна) в Кливленде в середине 1950-х. Такие аналоговые компьютеры использовались, кроме прочего, для таких комических программ НАСА, как Меркурий, Джемини, Аполло.

Изначально в электронных аналоговых компьютерах были сотни или тысячи электронных ламп, которые позднее заменили транзисторами. Сначала их программировали путём ручной установки контактов между различными компонентами на специальной панели. Это были сложные и причудливые машины, для запуска им требовался специально обученный персонал — всё это сыграло роль в их кончине.

Ещё одним фактором послужило то, что к 1960-м цифровые компьютеры развивались семимильными шагами благодаря многим их преимуществам: простому программированию, алгоритмической работе, простоте хранения, высокой точности, возможности обрабатывать задачи любого объёма при наличии времени. Быстродействие цифровых компьютеров быстро увеличилось за то десятилетие, а также за следующее, когда была разработана технология МОП (металл-оксид-полупроводник) для интегральных схем, позволившая размещать на одном чипе большое количество транзисторов, работающих цифровыми переключателями.

Изготовители аналоговых компьютеров вскоре включили цифровые схемы в свои системы, что породило гибридные компьютеры. Но было уже поздно: аналоговую часть этих машин нельзя было интегрировать на крупных масштабах, используя технологии разработки и производства того времени. Последний крупный гибридный компьютер сделали в 1970-х. Мир перешёл на цифровые компьютеры и больше не оглядывался.

Сегодня технология аналоговых МОП чрезвычайно продвинулась: её можно найти в приёмных и передающих схемах смартфонов, в сложных биомедицинских устройствах, во всяческой потребительской электронике, и во множестве умных устройств, из которых состоит интернет вещей. Аналоговые и гибридные компьютеры, построенные с использованием такой продвинутой современной технологии, могли бы очень сильно отличаться от существовавших полстолетия назад.

Но к чему вообще рассматривать аналоговую электронику в применении к вычислениям? Дело в том, что обычные цифровые компьютеры, пусть и мощные, могут уже подбираться к своему пределу. Каждое переключение цифровой схемы потребляет энергию. Миллиарды транзисторов на чипе, переключающиеся на гигагерцовых скоростях, вырабатывают огромное количество тепла, которое необходимо как-то удалять, пока оно не привело к критичной температуре. На YouTube легко находятся видео с демонстрацией того, как пожарить яйцо на некоторых современных цифровых компьютерных чипах.

Энергоэффективность особенно важна для научных вычислений. В цифровом компьютере течение времени необходимо аппроксимировать при помощи последовательности из дискретных шагов. При решении определённых сложных дифференциальных уравнений требуется использовать особо малые шаги, чтобы гарантировать получение решения в результате работы алгоритма. Это значит, что для этого требуется огромное количество вычислений, отнимающих много времени и потребляющих много энергии.

Около 15 лет назад я задумался: сможет ли аналоговый компьютер, разработанный при помощи современных технологий, предложить что-то ценное? Чтобы ответить на этот вопрос, Гленн Кован [Glenn Cowan] — тогда аспирант, которым я руководил в Британской Колумбии, а сейчас — профессор в Университете Конкордии в Монреале — разработал и создал аналоговый компьютер на одном чипе. Он содержал аналоговые интеграторы, умножители, генераторы функций и другие блоки, скомпонованные в стиле программируемой пользователем вентильной матрицы. Различные блоки были соединены морем проводов, которые можно было настраивать так, чтобы они создавали контакты после изготовления чипа.


Многие научные задачи требует решения систем из связанных дифференциальных уравнений. Для простоты рассмотрим два уравнения с двумя переменными x1 и x2. Аналоговый компьютер находит x1 и x2, используя схему, в которой ток, идущий по двум проводам, подчиняется тем же самым уравнениям. При использовании подходящего контура токи в двух проводах будут представлять решение изначальных уравнений.


Для этого нужны аналоговые интеграторы, блоки разветвлений, источники постоянного тока (суммирование токов требует простого объединения проводов). Для решения нелинейных дифференциальных уравнений аналоговый компьютер на чипе использует схемы непрерывного времени для формирования блоков, способных создавать произвольные функции (розовый)


Получается, что аналоговый компьютер общего назначения можно создать на основе программируемой пользователем вентильной матрицы, содержащей множество аналоговых элементов, работающих под цифровым управлением. Каждая горизонтальная и вертикальная серая полоска обозначает несколько проводов. Когда требуется точность повыше, результаты работы аналогового компьютера можно скормить цифровому для уточнения.

Цифровое программирование позволило объединить вход заданного аналогового блока с выходом другого, и создать систему, управляемую уравнением, которое нужно решить. Таймер не использовался: напряжение и токи развивались непрерывно, а не дискретными шагами. Такой компьютер мог решать сложные дифференциальные уравнения с одним независимым переменным с точностью порядка нескольких процентов.

Для некоторых приложений такой ограниченной точности бывает достаточно. В случаях, когда такой результат слишком груб, его можно скормить цифровому компьютеру для уточнения. Поскольку цифровой компьютер начинает с очень хорошей догадки, итогового результата можно достичь за время в 10 раз меньшее, что во столько же раз уменьшает и энергопотребление.

Недавно в Британской Колумбии двое студентов, Нинг Гуо [Ning Guo] и Йипен Хуанг [Yipeng Huang], Мингу Сеок [Mingoo Seok], Симха Сетумадхаван [Simha Sethumadhavan] и я создали аналоговый компьютер на одном чипе второго поколения. Как и в случае с ранними аналоговыми компьютерами, все блоки нашего устройства работали одновременно, и обрабатывали сигналы таким образом, который потребовал бы от цифрового компьютера параллельной архитектуры. Теперь у нас есть более крупные чипы, состоящие из нескольких копий нашего дизайна второго поколения, способные решать более крупные задачи.

Новая схема нашего аналогового компьютера боле эффективна в потреблении энергии и легче спаривается с цифровыми компьютерами. Такому гибриду доступны преимущества обоих миров: аналогового для примерных вычислений с высокой скоростью и малым энергопотреблением, и цифрового для программирования, хранения и высокоточных вычислений.

Наш последний чип содержит множество контуров, использованных в прошлом для аналоговых вычислений: например, интеграторы и мультипликаторы. Ключевым компонентом нашей новой схемы является новый контур, способный непрерывно вычислять произвольные математические функции. И вот, почему это важно.

Цифровые компьютеры работают с сигналами, принимающими всего два вида уровней напряжения, представляющих значения 0 или 1. Конечно, при переходе между этими двумя состояниями сигнал должен принимать и промежуточные значения. Типичная цифровая схема обрабатывает сигналы периодически, после того, как напряжения стабилизировались на уровнях, чётко представляющих 0 или 1. Эти схемы работают при помощи системного таймера с периодом, достаточным для того, чтобы напряжение переключилось из одного стабильного состояния в другое до того, как начнётся следующий раунд обработки. В результате такая схема выдаёт последовательность двоичных значений, по одному за каждый момент времени.

Наш генератор функций вместо этого работает с разработанным нами подходом, который мы назвали цифровой процесс непрерывного времени. В нём появляются бестаймерные двоичные сигналы, которые могут менять значение в любой момент, а не по чётко определённым часам. Мы построили конвертеры из аналога в цифру и из цифры в аналог, а также цифровую память, способные обрабатывать такие цифровые сигналы непрерывного времени.

Мы можем скормить аналоговый сигнал в такой конвертер из аналога в цифру, и он переведёт его в двоичное число. Это число можно использовать для поиска хранящегося в памяти значения. Выходное значение затем скармливается в преобразователь из цифры в аналог. Комбинация таких схем непрерывного времени даёт генератор функций с аналоговыми входом и выходом.


Автор с коллегами использовали современные технологии производства для упаковки мощного аналогового компьютера в небольшой корпус

Мы использовали наш компьютер для решения разных сложных дифференциальных уравнений с точностью до нескольких процентов. Это нельзя сравнить с обычным цифровым компьютером. Но точность — это ещё не всё. Во многих случаях примерных значений достаточно для работы. Примерное вычисление — намеренное ограничение точности вычислений — иногда используется и в цифровых компьютерах, к примеру, в таких областях, как машинное обучение, компьютерное зрение, биоинформатика и обработка больших данных. Это имеет смысл, когда, как это часто бывает, сами входные данные имеют погрешности.

Читайте также:  Зарегистрироваться на сайте гто 3 класс

Поскольку ядро нашего компьютера аналоговое, при необходимости он может напрямую соединяться с датчиками и силовыми приводами. Высокая скорость позволяет ему взаимодействовать с пользователем в реальном времени в вычислительных задачах, которые в обычном режиме были бы чрезвычайно медленными.

Конечно, у нашего подхода к вычислениям есть недостатки. Одна из проблем состоит в том, что особенно сложные задачи требуют множества аналоговых вычислительных блоков, из-за чего чип получается крупным и дорогим.

Один из способов решения такой проблемы — делить вычислительную задачу на мелкие подзадачи, каждая из которых будет решаться аналоговым компьютером, работающим под управлением цифрового. Такие вычисления уже не будут полностью параллельными, но, по крайней мере, они будут возможными. Исследователи изучали такой подход несколько десятилетий назад, когда гибридные компьютеры ещё были в моде. Они не ушли далеко, поскольку этот вид компьютеров был заброшен. Так что эта технология требует дальнейшей разработки.

Другая проблема состоит в том, что сложно настроить произвольные соединения между удалёнными блоками схемы на большом аналоговом чипе. Сеть контактов может приобрести непомерно большой размер и сложность. Однако некоторые научные задачи потребуют такого рода соединений, чтобы их можно было решать на аналоговом компьютере.

Это ограничение могут помочь обойти трёхмерные технологии производства. Но пока аналоговое ядро нашего гибридного дизайна лучше всего подходит для тех случаев, где требуется локальная связность — к примеру, для симуляции набора молекул, взаимодействующих только с молекулами, находящимися недалеко от них.

Ещё одна проблема — сложность в реализации функций многих параметров и связанная с ней проблема малой эффективности обработки дифференциальных уравнений в частных производных. В 1970-х велась разработка нескольких технологий для решения подобных уравнений на гибридных компьютерах, и мы планируем начать с того места, на котором закончились более ранние разработки.

Также у аналога есть недостатки с увеличением точности. Точность цифровой схемы можно увеличить, просто добавляя биты. Увеличение точности аналогового компьютера требует использования гораздо большей площади чипа. Именно поэтому мы концентрировались на приложениях с низкой точностью.

Я упомянул, что аналоговые вычисления могут ускорять подсчёты и экономить энергию, и хочу добавить подробностей. Аналоговая обработка на компьютере того типа, что сделали мы с коллегами, обычно занимает одну миллисекунду. Решение дифференциальных уравнений с одной производной требуют меньше 0,1 мкДж энергии. Такой чип при обычной технологии производства (65 нм CMOS) займёт область размером в квадратный миллиметр. Уравнения с двумя производными отнимают в два раза больше энергии и площади чипа, и так далее; время же на их решение остаётся неизменным.

Для некоторых критических областей применения с неограниченным бюджетом можно даже рассмотреть интеграцию масштаба подложки — всю кремниевую подложку целиком можно использовать, как один гигантский чип. Подложка в 300 мм позволит разместить на чипе более 100 000 интеграторов, что позволит симулировать систему из 100 000 спаренных нелинейных динамических уравнений первого порядка, или 50 000 второго порядка, и так далее. Это может оказаться полезным для симуляции динамики большого массива молекул. Время решения всё равно будет исчисляться миллисекундами, а рассеивание энергии — десятками ватт.

Только эксперименты могут подтвердить, что компьютеры такого типа будут реально полезными, и что накопление аналоговых ошибок не помешает им работать. Но если они заработают, результаты превзойдут всё, на что способны современные цифровые компьютеры. Для них некоторые из сложных задач такого порядка требуют огромные количества энергии или времени на решение, способного растянуться на дни или даже недели.

Конечно, для того, чтобы найти ответы на эти и другие вопросы, потребуется провести ещё много исследований: как распределять задачи между аналоговой и цифровой частью, как разбивать большие задачи на мелкие, как комбинировать итоговые решения.

В поисках этих ответов мы и другие исследователи, занявшиеся аналоговыми компьютерами, можем получить большое преимущество, воспользовавшись работой очень умных инженеров и математиков, проведённой полстолетия назад. Нам не нужно пытаться заново изобрести колесо. Мы должны использовать полученные ранее результаты как трамплин, и продвигаться гораздо дальше. По крайней мере, мы надеемся на это, и если не попробуем, то никогда не узнаем ответ.

Янис Цивидис — профессор электротехники в Колумбийском университете

Сейчас почти в каждом доме стоит компьютер для работы, учебы, развлечений или всего сразу. Современный ПК появился благодаря электронно-вычислительной машине, поэтому под ЭВМ часто подразумевают старую версию компьютера. Но мало кто знает о существовании АВМ.

Понятие

АВМ – это аналоговый компьютер, являющийся неким прообразом вычислительной машины. Он работает с числовыми данными, которые разрабатываются благодаря аналоговым физическим параметрам. Сюда можно отнести показатели скорости, длины, силы, давления и пр.

Помимо алгоритмов работы аналоговый компьютер отличается от ЭВМ тем, что лишен программы управления. То есть нет специальных команд, которые бы помогали ему справляться с задачами. В этом случае задание ставится перед машиной самим внутренним устройством и установленными настройками.

Начало истории

Прежде чем появился самый первый компьютер в мире, устройству пришлось пройти сложный путь. Считается, что аналоговый аппарат, который дал развитие подобным устройствам, впервые был разработан в 100 году до нашей эры. Антикитерский механизм нашли спустя 2 тысячи лет. Прибор получил свое название благодаря месту, где был найден – остров Антикитера.

Также довольно популярным считается астролябия. Это изобретение было известным в научных кругах среди астрологов и астрономов еще до нашей эры, помогало определять местоположение звезд на небе и разбираться в длительности суток.

Активные разработки

С XVII века начинается активная разработка аналоговых устройств. Так появляется логарифмическая линейка, которую, хотя и не назовешь компьютером, все же можно отнести к аналоговому вычислительному прибору.

Буквально через 20 лет появляется «паскалина», а после машина Морленда. В XIX веке изобретен планиметр, который помогал в то время находить площадь кривой. Позже — интегратор, который не похож на аналоговый компьютер, все же является прибором, легко высчитывающим интегралы.

В XX веке активной разработкой начали заниматься российские ученые. Например, Алексей Крылов придумал прибор, который помогал решать дифференциальные уравнения. Позже это изобретение использовали для проектирования кораблей.

Спустя 8 лет было создано оборудование на основе того, что придумал Крылов, но занимающиеся интегрированием дифференциальных уравнений. Вскоре появляется механическое интегрирующее изобретение и электродинамический счетно-аналитический прибор.

Механическая АВМ стала известна благодаря Конраду Цузе, который создал Z1. С появлением усилителя АВМ, не имеющие движущихся частей, начали работать на постоянном токе.

СССР также занималась разработками. Поэтому уже в 1949 году были выпущены АВМ на постоянном токе. Тут же появляется первый нейрокомпьютер-перцептрон. Все эти изобретения привели к тому, что в 60-е годы XX века аналоговые компьютеры стали главным помощником ученых по всему миру.

Работа устройства

Непросто точно определить, когда же появился самый первый компьютер в мире. В этом случае чаще всего вспоминают IBM, разработанный в Гарварде в 1941 году. А вот на этот счет об АВМ никакой подобной информации нет. Но сейчас это уже не так важно. Намного интереснее принцип действия.

Аналоговый компьютер занимается вычислениями, все цифровые данные могут меняться в зависимости от получаемых результатов. Последние представлены графиками, которые обычно отображены на бумаге или дисплее. Также результат можно получить в виде электрического сигнала. Он параллельно контролирует процесс вычисления и функционирование оборудования.

Особенности

Аналоговая вычислительная машина с легкостью справляется с автоматической регуляцией разных процессов производства. Это связано с тем, что АВМ быстро реагирует на любые изменения данных. Поэтому подобное устройство будет выгодно во время научных исследований, когда входные значения могут меняться во время процесса.

Читайте также:  Как в вибере восстановить удаленные сообщения

АВМ может стать полезна в науке, которая не требует дорогих электроприборов. Устройствам достаточно уметь имитировать изучаемые процессы. Иногда подобная машина нужна в том случае, чтобы решать задачи, не требующие такой точности вычислений, как в случае с задачами для ЭВМ.

Электронные аналоговые компьютеры легко справляются с дифференциальными уравнениями, интегрированиями и пр. Чтобы решить подобные задачи, достаточно использовать специальные схемы и узлы. В случае с АВМ подобных команд не требуется, поэтому работа этого устройства несколько проще.

Аналоговый блок

В описании аналогового компьютера должны присутствовать его элементы. В операционный блок входят такие детали, которые заняты одной из задач. Всех их можно объединить в систему, чтобы работать над одной операцией по определенной модели.

Блоки АВМ можно поделить на несколько групп:

В линейную группу входят детали, которые занимаются математическими операциями. К нелинейной группе относят блоки, работающие с нелинейной зависимостью функции от разных переменных. Логическая группа содержит элементы непрерывной, дискретной логики.

Существует несколько видов аналоговых компьютеров, поэтому их состав может несколько отличаться от имеющихся вариантов.

Базовые элементы

Помимо вышеописанных блоков, есть основные элементы, которые имеют свои определенные параметры. Существует емкостное ЗУ, которое основывается на конденсаторных свойствах и может хранить напряжение.

Делитель напряжения также относится к ЗУ. В этом случае на работу влияют углы поворота реостатов. Они зависят от запоминаемых величин. К основным блокам относят запоминающую пару, которая часто представлена операционным усилителем. Один может функционировать в отслеживании входного сигнала, второй – в хранении.

Характеристика

Как у любого устройства, у аналогового компьютера есть характеристики. Но самая основная – добротность. Эта обобщенный параметр машины, который имеет определенную формулу. Некоторые значения зависят от уровня помех, также на них влияют ошибки и точности.

Разновидности

Как уже упоминалось ранее, АВМ может быть разных типов. Но в целом каждый вариант можно отправить в одну из двух групп:

  • специализированную – для узких специальных задач;
  • универсальную – для любых вариант заданий.

Далее все аналоговые компьютеры можно распределить на зависимые от разновидности рабочего тела, по конструктивным признакам и по типу функционирования.

Тип рабочего тела

Возможности аналогового компьютера определили его тип. Но не только функционирование влияет на дифференциацию устройств. Все также зависит от типа рабочего тела. Так, встречаются:

  • механические;
  • пневматические;
  • гидравлические;
  • электрические;
  • комбинированные;
  • электромеханические.

К механическому типу относят такие устройства, которые имеют механические перемещения. Из-за особенностей этого варианта машины необходимо масштабировать переменные, а также вести силовой расчет конструкции и мертвых ходов.

Этот тип имеет свои достоинства и недостатки. Машина надежная и справляется с различными математическими задачами. Вместе с тем имеет высокую стоимость, непростой механизм разработки и крупные размеры.

Пневматический вид работает с показателями давления воздуха. Для получения результатов необходимо обзавестись построенной сетью. В составе этой машины часто можно увидеть дроссели, емкости и мембраны.

Этот тип АВМ практически не имеет каких-либо погрешностей. Сейчас часто его можно встретить в промышленности, которая требует повышенной вибрационной стойкости и работе при перепадах температур.

Гидравлический тип работает с дифференциальными уравнениями, которые связаны с протеканием воды. Ранее эти машины можно было встретить во многих фирмах, до 80-х годов XX века. Сейчас есть лишь две гидравлические АВМ, которые находятся в музее.

По аналогии можно догадаться, что электрические устройства берут за показатели электрическое напряжение постоянного тока. Популярны благодаря надежным свойствам, скорости работы, удобному регулированию и точным конечным данным.

Электромеханический тип имеет механические и электрические переменные величины. Для машины этого вида характерны вращающиеся трансформаторы и тахогенераторы. Устройство имеет скользящие контакты, поэтому менее надежно, чем предыдущие варианты.

Конструктивные признаки

АВМ матричного типа имеет отдельные элементы, которые объединяют строго в группы по определенным признакам. Этот вариант подходит для создания дифференциальных уравнений. Но выполнение процессов нужно настраивать определенным образом.

Группы, которые имеют определенные признаки, работают каждая со своим заданием. Для корректного исследования нужно использовать масштаб. Этот тип имеет низкую эффективность.

Структурный тип АВМ представлен устройствами, имеющими вычислительные блоки. В этом случае они объединены не строго, а благодаря задачам, которые нужны для разбора операции. Рассчитана машина на математическое моделирование.

Функционирование

В эту группу относят устройства:

Быстрый тип настроен так, что этапы решения процессов повторяются в автоматическом режиме. Это сделано благодаря системе коммутации. Частота повторений зависит от характеристик деталей. Для работы с подобной скоростью требуется сложная конструкция. Преимуществом такой машины является возможность наблюдения за результатами экспериментов.

Медленный тип имеет однократное действие. Решение обычных процессов в этом случае может занимать от нескольких секунд до нескольких минут. Результат исследований можно увидеть только после окончания всех циклов.

Итеративная АВМ использует для решения итерационный способ. Машина подобного типа позволяет управлять ходом эксперимента в определенные отрезки времени.

Использование машин

Электронные аналоговые компьютеры известны уже давно, поэтому прошли определенную стадию совершенствования. Эти устройства основаны на задании физических параметров элементов. Обычно этот процесс происходит за счет включения и исключения некоторых блоков из системы.

До того как АВМ достигла пика своего развития, подобные устройства применялись в авиации и ракетной технике. Машины в этом случае помогали быстро обрабатывать данные и формировать сигналы для управления. Так стали известны автопилоты и более сложные системы управления полетами.

В автомобиле также можно найти аналоговую систему. Здесь ею является трансмиссия. Когда вращающий момент изменяется, жидкость меняет давление в гидроприводе. Таким образом происходит определенный коэффициент передачи.

Как уже упоминалось ранее, часто АВМ относят к узкоспециальным устройствам, поэтому их применяют для особых задач. Ранее был известен кулачковый механический аналоговый прибор. Его использовали в паровозостроении.

Механические компьютеры стали популярны в сфере космоса. Они помогали собирать данные благодаря индикаторам поверхности. До 2002 года был известен компьютер «Глобус», который справлялся с подобными задачами.

Есть аналоговые приборы и в военной технике. Они отвечают за управление огнем артиллерии, вычисления разных показателей во время сражений и т. п. В этом случае используются быстрые машины, которые легко справляются в условиях помех.

Примеры

Примеров аналоговых компьютеров за время их существования собралось множество. К примеру, в 1962 году была создана АВМ «Итератор». Она помогала решать особый вид задач, связанный с линейными уравнениями. Этот прибор функционирует благодаря особому способу, которым ученые обязаны Ньютону. Также «Итератор» справляется с линейными алгебраическими уравнениями.

Также миру известно целая серия устройств «МН». Название является аббревиатурой – «модель нелинейная». Изначально устройство должно было работать с задачами Коши. Самым ярким представителем линейки является «МН-18». Это средней мощности прибор, который может решать сложные динамические системы. Делает он это с помощью математического моделирования.

Также стоит упомянуть о Тележке Монте-Карло. Этот компьютер появился благодаря Энрико Ферми. Он был рассчитан на исследование движения нейтронов. Для получения результатов был взят за основу метод Монте-Карло.

ZAM – это очередное семейство аналоговых машин, которые были созданы в Варшаве. Их производство началось в 60-е годы XX века. Каждое устройство работало на основе двоичной системы исчисления.

Примечание

Принято считать, что мозг человека – самое популярное «аналоговое устройство». Ученые считают его сильным и работоспособным прибором, который когда-либо существовал. Конечно, с таким утверждением можно поспорить, поскольку работа импульсов осуществляется за счет дискретных сигналов. Но данные в нервной системе не имеют цифровой вид.

Цифровые и аналоговые компьютеры объединились, и получились нейрокомпьютеры. Это гибридные устройства, которые, хотя и относят к аналоговым, построены на цифровых ЭВМ. Эти машины работают аналогично клеткам мозга.

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *