0

Дана плотность вероятности непрерывной случайной величины x

Задание 2. Найти дисперсию случайной величины X , заданной интегральной функцией.

Задание 3. Найти математическое ожидание случайной величины Х заданной функцией распределения.

Задание 4. Плотность вероятности некоторой случайной величины задана следующим образом: f(x) = A/x 4 (x = 1; +∞)
Найти коэффициент A , функцию распределения F(x) , математическое ожидание и дисперсию, а также вероятность того, что случайная величина примет значение в интервале [0,2]. Построить графики f(x) и F(x) .

Задача. Функция распределения некоторой непрерывной случайной величины задана следующим образом:

Определить параметры a и b , найти выражение для плотности вероятности f(x) , математическое ожидание и дисперсию, а также вероятность того, что случайная величина примет значение в интервале [2,3]. Построить графики f(x) и F(x).

  • Решение
  • Видео решение

Случайная величина Х задана плотностью распределения f(x):

Пример №2 . Случайная величина X задана функцией распределения F(x). Найти плотность распределения вероятностей, математическое ожидание и дисперсию случайной величины. Схематично построить графики функций F(x) и f(x).

Ранее мы представили примеры решений задач о дискретной случайной величине, теперь переходим к непрерывной. Формально в задачах требуется найти тоже самое: вычислить числовые характеристики, начертить графики, определить неизвестные параметры, найти вероятности событий.

Но формулы-то совсем другие (в силу непрерывности СВ), поэтому стоит разобраться в них хорошенько. Надеемся, наши примеры вам помогут (а если нет времени, закажите решение).

Ниже вы найдете примеры решений на самые разные законы распределений непрерывных случайных величин: законы $arcsin$ и $arctan$, тригонометрические и логарифмические функции, показательный, равномерный закон распределения, законы Коши, Симпсона, Лапласа и т.д.

Примеры решений

Задача 1. Случайная величина X задана дифференциальной функцией распределения

1) Определить вероятность попадания случайной величины X в интервал $[pi, 5/4 pi]$.
2) Найти математическое ожидание и дисперсию случайной величины X.

Задача 2. Случайная величина X задана плотностью вероятности:

Требуется:
а) найти коэффициент C;
б) найти функцию распределения F(x);
в) найти M(X), D(X), σ(X)
г) найти вероятность P(α -2t при t ≥ 0 и f(t)=0 при t Решебник по теории вероятности онлайн

Читайте также:  Бесплатные ssl сертификаты letsencrypt org

Больше 11000 решенных и оформленных задач по теории вероятности:

Функцией распределения случайной величины Х называется функция F(Х), выражающая для каждого Х вероятность того, что случайная величина Х примет значение, меньшее Х: .

Функцию F(х) иногда называют интегральной функцией распределения, или интегральным законом распределения.

Случайная величина Х называется Непрерывной, если ее функция распределения непрерывна в любой точке и дифференцируема всюду, кроме, быть может, отдельных точек.

Примеры непрерывных случайных величин: диаметр детали, которую токарь обтачивает до заданного размера, рост человека, дальность полета снаряда и др.

Теорема. Вероятность любого отдельно взятого значения непрерывной случайной величины равна нулю

.

Следствие. Если Х — непрерывная случайная величина, то вероятность попадания случайной величины в интервал не зависит от того, является этот интервал открытым или закрытым, т. е.

.

Если непрерывная случайная величина Х может принимать только значения в границах от А до B (где А и B — некоторые постоянные), то функция распределения ее равна нулю для всех значений и единице для значений .

Для непрерывной случайной величины

.

Все свойства функций распределения дискретных случайных величин выполняются и для функций распределения непрерывных случайных величин.

Задание непрерывной случайной величины с помощью функции распределения не является единственным.

Плотностью вероятности (Плотностью распределения или Плотностью) Р(Х) непрерывной случайной величины Х называется производная ее функции распределения

.

Плотность вероятности Р(Х), как и функция распределения F(Х), является одной из форм закона распределения, но в отличие от функции распределения она существует только для Непрерывных случайных величин.

Плотность вероятности иногда называют дифференциальной функцией, или дифференциальным законом распределения.

График плотности вероятности называется кривой распределения.

Свойства плотности вероятности непрерывной случайной величины:

Читайте также:  Как войти в айклауд с андроид

.

(рис. 8.1).

(рис. 8.2).

4. .

Геометрически свойства плотности вероятности означают, что ее график — кривая распределения — лежит не ниже оси абсцисс, и полная площадь фигуры, ограниченной кривой распределения и осью абсцисс, равна единице.

Пример 8.1. Минутная стрелка электрических часов передвигается скачками поминутно. Вы бросили взгляд на часы. Они показывают А минут. Тогда для вас истинное время в данный момент будет случайной величиной. Найти ее функцию распределения.

Решение. Очевидно, что функция распределения истинного времени равна 0 для всех и единице для . Время течет равномерно. Поэтому вероятность того, что истинное время меньше А + 0,5 мин, равна 0,5, так как одинаково вероятно, прошло ли после А менее или более полминуты. Вероятность того, что истинное время меньше А + 0,25 мин, равна 0,25 (вероятность этого времени втрое меньше вероятности того, что истинное время больше А + 0,25 мин, а сумма их равна единице, как сумма вероятностей противоположных событий). Аналогично рассуждая, найдем, что вероятность того, что истинное время меньше А + 0,6 мин, равна 0,6. В общем случае вероятность того, что истинное время меньше А + + α мин , равна α. Следовательно, функция распределения истинного времени имеет следующее выражение:

Она непрерывна всюду, а производная ее непрерывна во всех точках, за исключением двух: Х = а и Х = а + 1. График этой функции имеет вид (рис. 8.3):

Пример 8.2. Является ли функцией распределения некоторой случайной величины функция

Все значения этой функции принадлежат отрезку , т. е. . Функция F(Х) является неубывающей: в промежутке она постоянна, равна нулю, в промежутке возрастает, в промежутке также постоянна, равна единице (см. рис. 8.4). Функция непрерывна в каждой точке Х0 области ее определения — промежутка , поэтому непрерывна слева, т. е. выполняется равенство

Читайте также:  Как в 1с посмотреть движение документа

, .

Выполняются и равенства:

, .

Следовательно, функция удовлетворяет всем свойствам, характерным для функции распределения. Значит данная функция является функцией распределения некоторой случайной величины Х.

Пример 8.3. Является ли функцией распределения некоторой случайной величины функция

Решение. Данная функция не является функцией распределения случайной величины, так как на промежутке она убывает и не является непрерывной. График функции изображен на рис. 8.5.

Пример 8.4. Случайная величина Х задана функцией распределения

Найти коэффициент А и плотность вероятности случайной величины Х. Определить вероятность неравенства .

Решение. Плотность распределения равна первой производной от функции распределения

Коэффициент А определяем с помощью равенства

,

.

Тот же результат можно было получить, используя непрерывность функции в точке

, .

Следовательно, .

Поэтому плотность вероятности имеет вид

Вероятность Попадания случайной величины Х в заданный промежуток вычисляется по формуле

.

Пример 8.5. Случайная величина Х имеет плотность вероятности (закон Коши)

.

Найти коэффициент А и вероятность того, что случайная величина Х примет какое-нибудь значение из интервала . Найти функцию распре­деления этой случайной величины.

Решение. Найдем коэффициент А из равенства

,

Но

Следовательно, .

Итак, .

Вероятность того, что случайная величина Х примет какое-нибудь значение из интервала , равна

Найдем функцию распределения данной случайной величины

Пример 8.6. График плотности вероятности случайной величины Х изображен на рис. 8.6 (закон Симпсона). Написать выражение плотности вероятности ифункцию распределения этой случайной величины.

Решение. Пользуясь графиком, записываем аналитическое выражение плотности распределения вероятностей данной случайной величины

Найдем функцию распределения.

Если , то .

Если , то .

Если , то

Если , то

Следовательно, функция распределения имеет вид

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *