0

Для чего нужен процессор в играх

Не обзорами едиными. Именно так стоит начать сегодняшнюю статью, которая станет еще одной полезной ссылкой в нашей рубрике «Технологии», в которой мы редко, но все же проводим исследования не конкретных продуктов, а полезных возможностей, которые несут в себе подобные устройства.

Полученные результаты тестов красноречиво свидетельствуют об отсутствии какой-либо необходимости в установке мощного процессора в домашнюю игровую систему.

Мы помним про тройку ключевых девайсов в персональном компьютере, которые необходимы каждому геймеру: процессор, ОЗУ и видеокарта. Сейчас мир ИТ движется в сторону снижения мощностей и миниатюризации ПК, однако мощные системы и производительные игры еще никто не отменял. А значит заложенные в каждом энтузиасте правила сбора грамотной машины будут жить еще долгое время.

Всем известно, что ключевым компонентом ПК, который влияет на количество кадров в секунду в любом игровом приложении, является видеоадаптер. Чем он мощнее, тем большее разрешение и детализацию картинки может себе позволить пользователь. Здесь все более-менее просто.

С оперативной памятью также все ясно, ибо ее количество, да и таковая частота (почти в 100% случаев), никак не влияют на игровой fps. Золотой стандарт сегодня — это 8 Гбайт, однако мы смеем вас заверить, что и 4 Гбайт вполне достаточно для запуска ваших любимых игр.

Гораздо важнее в 2015 году иметь побольше видео мозгов (и вот здесь 4 Гбайт уже не достаточно, особенно для GTA 5).

И наконец сердце системы – процессор, так много умеющий и так много значащий, но до сих пор остающийся некоторой темной темой для игроков.

Два, четыре или шесть ядер; три, четыре или все же два с половиной гигагерца? Вопросов к ЦП существует достаточно (а тут еще и пресловутое раскрытие потенциала мощных видеокарт), а вот ответов в СМИ дается не так много, самое главное, что всплывают они не так часто, как того требуют пользователи.

Всем известно, что ключевым компонентом ПК, который влияет на количество кадров в секунду в любом игровом приложении, является видеоадаптер.

Какой же процессор необходим для современных игр? И какую видеокарту для него стоит выбрать? В этом мы и решили разобраться.

Участниками сегодняшних ответов на вопросы стали процессоры от Intel разных поколений (четвертого, пятого и шестого). Почему нет устройств от AMD? Да потому что и самой AMD уже практически нет. Вспомните ли вы когда в последний раз эта компания выпускала производительные десктопные процессоры? Напоминаем, что это было в 2011 году, архитектура Bulldozer (AMD K11) на 32 нм. Нам обещают AMD Zen (AMD K12) в 2016 году, но можно ли доверять имеющейся скудной информации? Время покажет.

Итак, перед нами три разных процессора, три разные платформы и три различных сокета (даже стандарты памяти варьируются).

Есть основания полагать, что даже процессоров Intel Core i3 с 4 Мбайт кэша и технологией Hyper-Threading окажется достаточно для любых игровых приложений.

Однако видеокарта для всех систем у нас одна – ASUS STRIX GTX 980 Ti, – ключевой аспект сегодняшнего тестирования, который и уровняет все три платформы между собой, дав искомый ответ в заглавии. И именно ей предстоит обрабатывать картинку во всех тестовых играх.

Разрешение экрана в приложениях — Full HD (пожалуй, до сих пор это самый популярный и стандартный формат вывода игровой картинки). Настройки качества графики — максимальные.

Для чистоты экспериментов каждый из процессоров даже разгонялся, чтобы еще более детально отразить влияние мощности ЦП на итоговый кадр/с (или отсутствия этого влияния). Хотя после первых результатов стало очевидно, что разгонять Intel Core i5-6400 смысла нет, да это оказалось и невозможно.

Тестовый стенд:

Первая система:

Вторая система:

Третья система:

Полученные результаты тестов красноречиво свидетельствуют об отсутствии какой-либо необходимости в установке мощного процессора в домашнюю игровую систему. От дополнительных физических ядер нет никакого толка, как и от тактовой частоты (что сводит на нет открытый множитель в процессорах с суффиксом «К» для озвученной цели). Ключевым фактором по-прежнему остается видеокарта.

Как видите, один из самых мощных одночиповых адаптеров в состоянии раскрыть даже Intel Core i5 начальной серии. Действительно, можно наблюдать некоторую разницу в кадр/с между разогнанным процессором и дефолтным или шестиядерным и четырехядерным, однако она во всех играх и бенчмарках не превышает и 15%. Исключением стала лишь игра GTA V (эта линейка всегда славилась бешеной процессорозависимостью), но и в ней 50-60 кадр/с достаточно для любого игрового маньяка. Вряд ли найдутся пользователи, способные заметить разницу на глаз между 70 и 100 кадр/с.

Есть основания полагать, что даже процессоров Intel Core i3 с 4 Мбайт кэша и технологией Hyper-Threading окажется достаточно для любых игровых приложений. Ситуация несколько напоминает связку AMD CrossfireX с двумя адаптерами, толку от которых по сравнению с одним, но мощным трехмерным ускорителем, фактически не заметно, зато мороки с настройкой хоть отбавляй.

Игры — не те задачи, где важно количество, тут важнее оптимизация и задумка разработчиков (как правило они стараются ориентировать свои продукты на как можно более широкую аудиторию пользователей, в том числе со слабыми системами).

Если вы геймер и до сих пор стоите перед дилеммой выбора необходимого процессора, не спешите тратить лишние сотни долларов на мощный ЦП (и уж тем более с разблокированным множителем). Лучше присмотритесь к более производительной видеокарте или функциональной материнской плате. Толку от такой покупки будет гораздо больше.

Читайте также:  Замена датчика тяги газового котла

Многие игроки ошибочно считают главной в играх мощную видеокарту, однако это не совсем правда. Конечно, многие графические настройки никак не влияют на CPU, а только затрагивают графическую карту, но это не отменяет того факта, что процессор никак не задействуется во время игры. В этой статье мы подробно рассмотрим принцип работы ЦП в играх, расскажем, почему нужно именно мощное устройство и его влияние в играх.

Роль процессора в играх

Как известно, CPU передает команды с внешних устройств в систему, занимается выполнением операций и передачей данных. Скорость исполнения операций зависит от количества ядер и других характеристик процессора. Все его функции активно используются, когда вы включаете любую игру. Давайте подробнее рассмотрим несколько простых примеров:

Обработка команд пользователя

Практически во всех играх как-то задействуются внешние подключенные периферийные устройства, будь то клавиатура или мышь. Ими осуществляется управление транспортом, персонажем или некоторыми объектами. Процессор принимает команды от игрока и передает их в саму программу, где практически без задержки выполняется запрограммированное действие.

Данная задача является одной из самых крупных и сложных. Поэтому часто случается задержка отклика при движении, если игре не хватает мощностей процессора. На количестве кадров это никак не отражается, однако управление совершать практически невозможно.

Генерация случайных объектов

Многие предметы в играх не всегда появляются на одном и том же месте. Возьмем за пример обычный мусор в игре GTA 5. Движок игры за счет процессора решает сгенерировать объект в определенное время в указанном месте.

То есть, предметы вовсе не являются случайными, а они создаются по определенным алгоритмам благодаря вычислительным мощностям процессора. Кроме этого стоит учитывать наличие большого количества разнообразных случайных объектов, движок передает указания процессору, что именно требуется сгенерировать. Из этого выходит, что более разнообразный мир с большим количеством непостоянных объектов требует от CPU высокие мощности для генерации необходимого.

Поведение NPC

Давайте рассмотрим данный параметр на примере игр с открытым миром, так получится более наглядно. NPC называют всех персонажей, неуправляемых игроком, они запрограммированы на определенные действия при появлении определенных раздражителей. Например, если вы откроете в GTA 5 огонь из оружия, то толпа просто разбежится в разные стороны, они не будут выполнять индивидуальные действия, ведь для этого требуется большое количество ресурсов процессора.

Кроме этого в играх с открытым миром никогда не происходят случайные события, которые не видел бы главный персонаж. Например, на спортивной площадке никто не будет играть в футбол, если вы этого не видите, а стоите за углом. Все вращается только вокруг главного персонажа. Движок не будет делать того, что мы не видим в силу своего расположения в игре.

Объекты и окружающая среда

Процессору нужно рассчитать расстояние до объектов, их начало и конец, сгенерировать все данные и передать видеокарте для отображения. Отдельной задачей является расчет соприкасающихся предметов, это требует дополнительных ресурсов. Далее видеокарта принимается за работу с построенным окружением и дорабатывает мелкие детали. Из-за слабых мощностей CPU в играх иногда не происходит полная загрузка объектов, пропадает дорога, здания остаются коробками. В отдельных случаях игра просто на время останавливается для генерации окружающей среды.

Дальше все зависит только от движка. В некоторых играх деформацию автомобилей, симуляцию ветра, шерсти и травы выполняют видеокарты. Это значительно снижает нагрузку на процессор. Порой случается, что эти действия необходимо выполнять процессору, из-за чего происходят просадки кадров и фризы. Если частицы: искры, вспышки, блески воды выполняются CPU, то, скорее всего, они имеют определенный алгоритм. Осколки от выбитого окна всегда падают одинаково и так далее.

Какие настройки в играх влияют на процессор

Давайте рассмотрим несколько современных игр и выясним, какие настройки графики отражаются на работе процессора. В тестах будут участвовать четыре игры, разработанные на собственных движках, это поможет сделать проверку более объективной. Чтобы тесты получились максимально объективными, мы использовали видеокарту, которую эти игры не нагружали на 100%, это сделает тесты более объективными. Замерять изменения будем в одних и тех же сценах, используя оверлей из программы FPS Monitor.

GTA 5

Изменение количества частиц, качества текстур и снижение разрешения никак не поднимают производительность CPU. Прирост кадров виден только после снижения населенности и дальности прорисовки до минимума. В изменении всех настроек до минимума нет никакой необходимости, поскольку в GTA 5 практически все процессы берет на себя видеокарта.

Благодаря уменьшению населенности мы добились уменьшения числа объектов сложной логикой, а дальности прорисовки – снизили общее число отображаемых объектов, которые мы видим в игре. То есть, теперь здания не обретают вид коробок, когда мы находимся вдали от них, строения просто отсутствуют.

Watch Dogs 2

Эффекты постобработки такие, как глубина резкости, размытие и сечение не дали прироста количества кадров в секунду. Однако небольшое увеличение мы получили после снижения настроек теней и частиц.

Кроме этого небольшое улучшение плавности картинки было получено после понижения рельефа и геометрии до минимальных значений. Уменьшение разрешения экрана положительных результатов не дало. Если уменьшить все значения на минимальные, то получится ровно такой же эффект, как после снижения настроек теней и частиц, поэтому в этом нет особого смысла.

Crysis 3

Crysis 3 до сих пор является одной из самых требовательных компьютерных игр. Она была разработана на собственном движке CryEngine 3, поэтому стоит принять во внимание, что настройки, которые повлияли на плавность картинки, могут не дать такого результата в других играх.

Минимальные настройки объекты и частиц значительно увеличили минимальный показатель FPS, однако просадки все равно присутствовали. Кроме этого на производительности в игре отразилось после уменьшения качества теней и воды. Избавиться от резких просадок помогло снижение всех параметров графики на самый минимум, но это практически не отразилось на плавности картинки.

Читайте также:  Зайти в свой apple id через компьютер

Battlefield 1

В этой игре присутствует большее разнообразие поведений NPC, чем в предыдущих, так что это значительно влияет на процессор. Все тесты проводились в одиночном режиме, а в нем нагрузка на CPU немного понижается. Добиться максимально прироста количества кадров в секунду помогло снижение качества пост обработки до минимума, также примерно этот же результат мы получили после снижения качества сетки до самых низких параметров.

Качество текстур и ландшафта помогло немного разгрузить процессор, прибавить плавности картинки и снизить количество просадок. Если же снизить абсолютно все параметры до минимума, то мы получим больше пятидесяти процентов увеличения среднего значения количества кадров в секунду.

Выводы

Выше мы разобрали несколько игр, в которых изменение настроек графики влияет на производительность процессора, однако это не гарантирует того, что в любой игре вы получите тот же самый результат. Поэтому важно подойти к выбору CPU ответственно еще на стадии сборки или покупки компьютера. Хорошая платформа с мощным ЦП сделает игру комфортной даже не на самой топовой видеокарте, а вот никакая последняя модель GPU не повлияет на производительность в играх, если не тянет процессор.

В этой статье мы рассмотрели принципы работы CPU в играх, на примере популярных требовательных игр вывели настройки графики, максимально влияющие на нагрузку процессора. Все тесты получились максимально достоверные и объективные. Надеемся, что предоставленная информация была не только интересная, но и полезная.

Отблагодарите автора, поделитесь статьей в социальных сетях.

С компьютерным железом всегда было связано много мифов — часть из них действительно в некоторых случаях имеет смысл, но хватает и укоренившихся, типа «чем тяжелее блок питания, тем он лучше», или «чем больше видеопамяти, тем быстрее видеокарта». И в этой статье я разберу основные мифы, связанные с процессорами.

1. Чем больше частота, тем быстрее процессор.

Миф уходит корнями в 90-ые, когда многие пользователи, дабы не разбираться в непонятных Intel 386, 486 и Pentium просто смотрели на частоту — если у какого-то процессора она была выше, то он действительно оказывался быстрее. Однако сейчас это в общем и целом не верно: процессоры могут иметь различные архитектуры с абсолютно разной производительностью на герц, поэтому какой-нибудь Apple A7 с частотой в 1.3 ГГц оказывается на уровне Snapdragon 800 с частотой в 2.2 ГГц и в этом нет ничего странного. Но если речь идет о процессорах одного поколения и одной линейки, то это в целом работает: так, i5-8400 с частотой в 2.8 ГГц действительно медленнее i5-8500 с частотой в 3 ГГц.

2. От разгона процессоры сгорают.

Стоит различать программные и «железячные» параметры процессора. Так, частота — это чисто программный параметр: к примеру, для энергосбережения она может снижаться до сотен мегагерц, а при сильной нагрузке взлетать до нескольких гигагерц. Поэтому банальное увеличение частоты никак навредить не может — максимум вы получите нестабильную работу процессора, но сжечь его таким способом точно не сможете.

Совсем другое дело — напряжение. Это — «железячный» параметр: с одной стороны, чем выше напряжение, тем более высокие частоты становятся доступны процессору. С другой стороны, у каждого процессора есть безопасный диапазон напряжений, и при выходе из него есть ненулевой шанс обеспечить себе поход в магазин за новым CPU.

3. Высокие температуры быстро убивают процессор.

Есть мнение, что работая при температурах, близких к максимальным, процессор проживет меньше. С физической точки зрения смысл в этом есть — при высоких температурах деградация кремниевого кристалла идет быстрее. Но тут есть два важных замечания: во-первых, критические температуры, которые указывают производители, берутся с хорошим запасом зачастую в пару десятков градусов. Во-вторых, срок жизни кремниевого кристалла — это многие десятилетия (сейчас хватает самолетов начала 90-ых годов, «мозг» которых — Intel 386 тех же лет, и они отлично работают), поэтому незначительное уменьшение срока жизни при нагреве вы гарантированно не заметите, сменив процессор гораздо раньше.

А вот что действительно может заставить деградировать процессор быстрее, так это повышение напряжения до близких к критическим: в таком случае негативные эффекты можно увидеть уже спустя год — процессор будет не способен нормально работать на той частоте, с которой не было проблем при покупке, и придется ее снижать.

4. Архитектура ARM лучше x86.

В последнее время ведутся разговоры о том, что ARM лучше x86, и скоро будет массовый переход компьютеров на новую архитектуру. Тут следует понимать, что нет такого понятия, как хорошая или плохая архитектура — есть понятие хороший или плохой процессор. Сравнение ARM и x86 выглядит как сравнение атомного реактора и двигателя внутреннего сгорания: вроде и тот и тот берут на входе топливо и дают на выходе энергию, но делают это абсолютно разными способами, и чтобы сравнить их производительность и эффективность нужно уже брать конкретных представителей и сравнить их между собой. Аналогично и с архитектурами — имеет смысл брать представителей каждой и сравнивать, после чего делать вывод, что какой-то из них быстрее/энергоэффективнее/дешевле, а другой наоборот.

5. Чем больше ядер у процессора, тем лучше.

Казалось бы, это логично: больше ядер — значит больше и производительность. На практике же все зависит от конкретной задачи: к примеру, игры до сих пор не умеют толком работать больше чем с 8-12 потоками, и может получиться так, что топовый 32-ядерный Theadripper будет показывать лучшую производительность, если отключить у него половину ядер. Так что выбирать процессор нужно не по количеству ядер, а по возможностям программ, в которых вы работаете: еще один пример — Photoshop, в котором до сих пор пара быстрых ядер выдает куда лучший результат, чем десяток медленных. Более того — до сих пор хватает софта, который негативно реагирует на гиперпоточность: при отключении логических ядер производительность может не упасть, а, наоборот, вырасти.

Читайте также:  Витом инструкция по применению отзывы

6. Все эти Xeon с AliExpress — головная боль и танцы с бубнами.

В последние несколько лет популярность Xeon с китайских торговых площадок выросла в разы (как и цены на них, увы). Причина этому проста: сервера переводят на более новое «железо», а старое, отработавшее 5-7 лет, списывают и продают за копейки, и его с большим удовольствием скупают китайцы. В итоге зачастую за 500-2000 рублей на Ali можно купить топовый процессор для своего сокета, десктопный аналог которого может стоить в разы дороже.

Основная критика идет из-за того, что с сокетом LGA775 и Xeon 5450 (и аналогами), с которых все и начиналось, действительно есть некоторые проблемы — нужно перепрошивать BIOS, не все платы совместимы и так далее. Но если брать более новые процессоры и сокеты — к примеру, Xeon X3440 и LGA1156 — то тут проблем нет вовсе, потому что поддержка серверных CPU уже есть в BIOS материнских плат на LGA1156, и вам просто нужно заменить процессор в сокете, после чего все заработает без всяких танцев с бубном.

7. Если процессор не раскрывает видеокарту, то это плохой процессор.

«Секта раскрывателей» образовалась всего несколько лет назад, когда с выходом PlayStation 4 и Xbox One создатели игр сильно увеличили требования к CPU. Что «проповедует» эта «секта»? Если процессор не может нагрузить видеокарту на 100%, то значит вы или зря заплатили за такую мощную видеокарту, или зря сэкономили на процессоре.

Почему вообще это происходит? Процессор в игре отвечает за подготовку кадров для видеокарты, физику, искусственный интеллект и т.д., соответственно он может подготовить определенное количество кадров в секунду — к примеру, 50. Видеокарта тоже может обработать и вывести на экран определенное количество кадров, и если их больше 50 в секунду — она некоторое время будет простаивать, а процессор «молотить» на 100%, если меньше 50 — наоборот, видеокарта будет работать на 100%, а процессор будет временами «отдыхать».

Причем следует понимать, что и топовые процессоры тоже могут подготовить не больше определенного количества кадров в секунду, просто в их случае эти цифры могут быть больше 100, а то и 200 — с учетом того, что их зачастую ставят с топовыми видеокартами и ультра-настройками графики, то обычно упор идет именно в GPU. Но если вы искусственно возьмете и снизите разрешение до HD, а настройки до минимальных, то можно будет увидеть, как какой-нибудь i9-9900K будет работать на 100%, а GTX 1060 прохлаждаться.

Отсюда можно сделать легкий вывод — от процессорозависимости можно всегда легко избавиться. Видеокарта прохлаждается? Поднимите настройки графики, увеличьте разрешение — в итоге вы получите более красивую картинку с ровно такой же производительностью. Разумеется, мы не рассматриваем случай, когда процессор тянет игру еле-еле в 15 FPS — даже в таком случае зачастую можно будет полностью нагрузить видеокарту, но вот играть будет все равно не приятно, хотя и, конечно, красиво.

8. 100% нагрузка на процессор убивает его быстрее.

Не самый частый миф — обычно проводится аналогия с техникой, которая при работе на максимум изнашивается и ломается быстрее. Но вот в процессоре нет механических частей, а деградация при нормальных условиях работы — процесс крайне медленный, и вы гораздо раньше купите себе новый ПК.

9. Водяное охлаждение процессора лучше воздушного.

С точки зрения физики все верно: вода (или большая часть жидкостей) — куда лучший проводник тепла, чем воздух. Однако следует понимать, что на рынке существует множество так называемых супер-кулеров, способных отвести и 200, и 250 Вт от процессора, чего с головой хватит для 99% пользователей ПК, причем стоят они зачастую дешевле СВО с такими же возможностями.

Так что брать СВО имеет смысл только в двух случаях: или у вас в компактном корпусе стоит мощный процессор, и супер-кулеры в него не помещаются, или же у вас разогнанный под 4.5 ГГц топовый 32-ядерный AMD Threadripper, потребляющий 400+ Вт. Во всех других случаях «водянка» обычно становится пустой тратой денег и возможными проблемами в будущем.

10. Спецификации процессора на сайте производителя — правда в последней инстанции.

Следует понимать, что очень многое на сайте производителя пишется с элементами маркетинга. Откровенной лжи, конечно же, не будет, но вот недоговорок может быть много: так, для нового i9-9900K указан теплопакет в 95 Вт, но вот на практике даже без разгона на максимальной частоте TurboBoost он может потреблять. аж до 200 Вт, то есть вдвое больше. Казалось бы, Intel врет? Ничуть — при родных 3.6 ГГц процессор действительно укладывается в 95 Вт, а TurboBoost — функция необязательная. Поэтому лучше смотреть реальную производительность и тепловыделение в обзорах.

Как видите, мифов о процессорах хватает. Знаете какие-нибудь еще? Пишите об этом в комментариях.

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *