0

Для чего разрабатывался стандарт firewire

Еще во времена появления первых компьютеров, поддерживающих последовательную передачу данных, появилась идея создать единый стандарт портов и кабелей, способных передавать любую информацию на высокой скорости. В период всеобщей погони за стандартизацией на свет появилась последовательная высокоскоростная шина IEEE 1394, позднее доработанная компанией Apple и переименованная в FireWire, которая была призвана урегулировать хаос, царивший в компьютерной среде 25 лет назад.

Несмотря на то что FireWire проиграл войну с USB, этот порт все еще можно встретить в различных устройствах: как в профессиональном сегменте, так и в потребительском (включая музыкальный бизнес). В материале, изложенном ниже, в деталях рассмотрим FireWire. Что это? Где используется? И нужен ли FireWire сегодня?

FireWire: что это?

FireWire – это специализированный интерфейс, разработанный компанией Apple в начале 1992 года. Это стандарт для скоростной передачи данных между компьютером и другими устройствами, подключаемыми к нему. Сначала контроллер FireWire внедрялся только в компьютеры компании Apple, но другие игроки рынка не заставили себя долго ждать. Уже спустя год новинку пристроили в свои гаджеты десяток компаний и производителей техники.

Интерфейс получил развитие и продвигался популярными на тот момент IT-компаниями под собственными названиями. Sony нарекли новый стандарт именем i.Link, а Texas Instruments дали ему название Lynx. Стандарт существует до сих пор, но уже не пользуется популярностью, так как та же Apple придумала ему замену в виде более производительного Thunderbolt. Контроллеры FireWire устанавливаются в ноутбуки, видеокамеры, жесткие диски, принтеры, а также звуковые карты.

История интерфейса

Идея по созданию FireWire зародилась в рядах Комитета по стандартам микрокомпьютеров в 1986 году. Была поставлена задача объединить сразу несколько стандартов в один единственный. Эту ношу на себя взяла компания Apple, представив миру FireWire (IEEE 1394). Спустя несколько лет и другие компании подключились к продвижению нового стандарта. Microsoft, например, настаивали на том, что FireWire необходимо устанавливать во все выпускаемые компьютеры. Было придумано немало вариантов использования нового контроллера, но со временем интерес к нему угас.

Несмотря на то что FireWire – это до сих пор наиболее продвинутый и мощный стандарт, в особенности для IT-специалистов, начиная с 2010 года, он перестал внедряться в новые устройства, так как Apple требовала отчислений за каждый контроллер, установленный в чужое устройство.

Основные особенности

  • FireWire поддерживает функцию горячего подключения. То есть можно изменить конфигурацию всей шины без выключения компьютера и перезапуска приложений, которые с ней работают.
  • В прошлом бытовало утверждение, что FireWire – это самый быстрый стандарт передачи данных. На самом деле так и было, скорость портов достигает 3200 Мбит/с. Это больше, чем у USB 2.0.
  • Устройства, оснащенные стандартом FireWire, могут взаимодействовать друг с другом без подключения к компьютеру.
  • FireWire-кабели могут передавать мультимедиа-сигнал в реальном времени.
  • В отличие от проприетарных стандартов, используется открытая архитектура, а значит, он может применяться без использования специализированного программного обеспечения.
  • На шине FireWire наличествуют контакты, обеспечивающие питание для низковольтных устройств.
  • Имеется возможность подключить до 63 устройств единовременно.

Спецификации FireWire

Порты FireWire, в зависимости от поколения, отличаются рядом особенностей:

  • IEEE 1394 – данный стандарт был окончательно принят и утвержден в 1995 году. Первыми вооружились новым стандартом производители видеокамер, в частности компания Sony, которая начала продвижение интерфейса под собственным названием Link. Несмотря на свое позиционирование, уже в то время контроллер также пришелся по вкусу и тем, кто занимался производством портативных жестких дисков. Причиной тому послужила высокая скорость передачи данных. Она достигала 400 Мбит/с. Длина кабеля составляла не более 4,5 метра.
  • IEEE 1394a – в 2000 году стандарт был обновлен. Основные изменения коснулись проработки совместимости между разными устройствами. Также была добавлена небольшая задержка на сброс шины. Задержка была введена для защиты от сброса настроек при «горячем» переподключении.
  • IEEE 1394b – очередное обновление произошло в 2002 году. Значительно увеличилась скорость обработки данных. Изменились кабели FireWire и разъемы для их подключения. Изменился только дизайн портов. Стандарты интерфейса остались прежними и для поддержки совместимости появились специализированные переходники FireWire старого поколения на новое (IEEE 1394b). Изменилось строение самих кабелей, их начали изготавливать из оптоволокна. Скорость передачи данных выросла до 1600 Мбит/с. Длина кабеля выросла до 100 метров.

Типы разъемов

Порты FireWire имеют еще несколько различий, в зависимости от поколения интерфейса. Существуют варианты с разным количеством контактов, а также дополнительными элементами питания:

  • IEEE 1394 – данный порт FireWire не имеет собственного питания и оснащается 4 контактами. Используется одна витая пара проводов для передачи информации с устройства на устройство и вторая витая пара для приема информации с других устройств. Подобный разъем устанавливается в ноутбуках и видеокамерах с поддержкой интерфейса.
  • IEEE 1394a – обновленный контроллер FireWire оснащен еще двумя контактами, которые отвечают за питание интерфейса.
  • IEEE 1394b – последнее поколение интерфейса, оснащенное еще двумя дополнительными контактами для передачи и приема информации, а также резервным контактом.

Звуковые карты Firewire

Диджеи и музыканты – большие поклонники IEEE1394. Одной из самых популярных сфер применений интерфейса FireWire является музыкальный бизнес. Данный стандарт обладает всеми необходимыми спецификациями для работы с музыкальными инструментами, звуковыми картами и микшерами. Интерфейс поддерживает одновременную параллельную работу с 52 каналами. IEEE1394 обладает высокой разрядностью и частотой дискретизации.

Для реализации всех возможностей интерфейса в работе применяется последовательное подключение сразу нескольких звуковых карт, одной за другой, на единственной шине (до 6 звуковых карт). Это необходимо в том случае, если вы уже являетесь обладателем звуковой карты на 8 каналов, и вам этого количества не хватает, тогда можно присоединить еще несколько карт. Некоторые звуковые карты, например MOTU Traveler MK3, изначально проектируются с прицелом на дальнейшее объединение и расширение.

Читайте также:  Зачем нужна отладка по usb

Сравнение с USB-Audio

FireWire – идеальный вариант для портативных звуковых карт, и это несмотря на то, что в большинстве случаев звуковые карты с поддержкой FireWire дороже, тогда как USB-карты более доступные. Важным преимуществом является все та же скорость передачи данных. У FireWire этот показатель значительно выше, а значит, этот интерфейс идеально подойдет для использования во время живых выступлений, где важна работа без задержек и «залипаний». USB в этом плане не так хорош, так как при работе с ним могут возникнуть проблемы с ощутимой задержкой сигнала (от инструмента до устройства для вывода звука).

Серьезным недостатком звуковых карт, поддерживающий только контроллер FireWire, можно назвать длительную и сложную настройку. Оптимизировать большой набор устройств и заставить их работать вместе очень непросто. С USB-Audio таких проблем не возникает, так как они все поддерживают функцию быстрой настройки. Достаточно подключить ее к компьютеру, как все сразу же начнет работать.

Зато USB не поддерживает «горячую» замену устройств. Раньше также возникали проблемы с переподключением звуковой карты. Если вы отключите USB-карту во время работы в компьютерной виртуальной студии, то, скорее всего, она сразу о ней забудет, и при подключении придется перезапустить приложение, через которое вы снимали звук, и настраивать всю систему заново. В случае с FireWire такого не произойдет. Справедливости ради стоит отметить, что данная проблема минует компьютеры, работающие под управлением Mac OS, где работа со звуком завязана на Core Audio.

Другие области применения

FireWire, будучи сетевым портом, как ни странно, был задействован не только в сфере передачи данных по сети и аудио, но и во многих других.

  • Во внешних накопителях памяти – в прошлом FireWire можно было часто встретить во внешних носителях, тому поспособствовала высокая скорость стандарта. Скорость контроллера была выше, чем у USB 2.0, посему такие жесткие диски были популярны в профессиональной сфере.
  • Сетевые подключения – операционные системы UNIX, такие как Mac OS и Linux, до сих пор поддерживают FireWire, где он может использоваться для передачи данных по интернету. Microsoft отказались от этой функции с выходом Windows Vista в 2005 году.
  • В камерах – иронично, но именно самый первый вариант применения FireWire до сих пор в ходу и остается довольно популярным. На рынке все еще можно встретить множество камер, видеопоток с которых передается через FireWire кабели.
  • В iPod – существовали версии портативного плеера, в которых зарядка и синхронизация музыки происходили с помощью FireWire. С выходом iPod nano 4-го поколения в Apple решили перейти на USB. Тем не менее еще долгое время можно было найти FireWire-переходники для iPod и iPhone.

Вместо заключения

Сегодня FireWire мало где используется. Применения, популярные в прошлом, такие как: подключение жестких дисков и отладка устройств, уже не котируются. Да и вряд ли удастся найти современные гаджеты, поддерживающие этот стандарт. FireWire остался уделом профессионалов и там же умрет. Единственное, для чего ныне годен стандарт FireWire, в плане потребительского использования – это одновременное подключение большого количества звуковых карт, о котором грезят многие диджеи и звукорежиссеры. Собственно, обратить внимание на саму звуковую карту с поддержкой FireWire стоит тем, кому необходима высокая скорость обработки сигнала, и тем, кто записывает сигнал более чем с 18 аудиоканалов. Все остальные варианты использования FireWire как в звуке, так и где либо еще не релевантны.

IEEE 1394 Interface
Тип Последовательная связь
История
Разработчик Apple Computer (сейчас Apple, Inc.)
Разработано 1995
Произведено 1995 — 2013
Вытеснено Thunderbolt (2013)
Спецификации
Длина до 4,5 м
Ширина 1
Подключение на ходу Да
Внешнее Да
Макс. напряжение 30 В
Макс. ток 1,5 A
Сигнал данных Да
Полоса пропускания 400–3200 Мбит/с (50–400 Мбайт/с)
Выводы 4, 6, 9

IEEE 1394 (FireWire [1] , i-Link) — последовательная высокоскоростная шина, предназначенная для обмена цифровой информацией между компьютером и другими электронными устройствами.

Различные компании продвигают стандарт под своими торговыми марками:

Содержание

История [ править | править код ]

В 1986 году членами Комитета по стандартам микрокомпьютеров (Microcomputer Standards Committee) принято решение объединить существовавшие в то время различные варианты последовательной шины ( Serial Bus ).

В 1992 году разработкой интерфейса занялась Apple.

В 1995 году принят стандарт IEEE 1394 (сама технология была разработана намного раньше, до появления Windows 95, что показывает большой потенциал данного института).

Около 1998 года содружество компаний, в том числе Microsoft, развивали идею обязательности 1394 для любого компьютера и использования 1394 внутри корпуса, а не только вне его. Существовали даже карты контроллеров с одним разъёмом, направленным внутрь корпуса. Также существовала идея Device Bay, то есть отсека для устройства со встроенным в отсек разъёмом 1394 и поддержкой горячей замены.

Такие тенденции прослеживаются в материалах Microsoft той поры, предназначенных для разработчиков компьютеров. Можно сделать вывод, что 1394 предлагали как замену ATA, то есть на роль, ныне выполняемую SATA.

Но этим идеям не суждено было воплотиться, и одной из главных причин такого исхода была лицензионная политика компании Apple, требующей выплат за каждый чип контроллера. Модели системных плат и ноутбуков, представленные на рынке начала 2010-х годов, как правило, уже не поддерживают интерфейс FireWire. Исключения представлены в узком топовом IT-сегменте [2] [3] .

Преимущества [ править | править код ]

  • Горячее подключение — возможность переконфигурировать шину без выключения компьютера.
  • Различная скорость передачи данных — 100, 200 и 400 Мбит/с в стандарте IEEE 1394/1394a, дополнительно 800 и 1600 Мбит/с в стандарте IEEE 1394b и 3200 Мбит/с в спецификации S3200.
  • Гибкая топология — равноправие устройств, допускающее различные конфигурации (возможность «общения» устройств без компьютера).
  • Высокая скорость — возможность обработки мультимедиа-сигнала в реальном времени
  • Поддержка изохронного трафика [4] .
  • Поддержка атомарных операций — сравнение/обмен, атомарное увеличение (операции семейства LOCK — compare/swap, fetch/add и т. д.).
  • Открытая архитектура — отсутствие необходимости использования специального программного обеспечения.
  • Наличие питания прямо на шине (маломощные устройства могут обходиться без собственных блоков питания). До 1,5 А и напряжение от 8 до 40 вольт.
  • Подключение до 63 устройств.
Читайте также:  Замена bios материнской платы

Шина IEEE 1394 может использоваться для:

Кабель представляет собой 2 витые пары — А и B, распаянные как A к B, а на другой стороне кабеля — как B к A. Также возможен необязательный проводник питания.

Устройство может иметь до 4 портов (разъёмов). В одной топологии может быть до 64 устройств. Максимальная длина пути в топологии — 16. Топология древовидная, замкнутые петли не допускаются.

При присоединении и отсоединении устройства происходит сброс шины, после которого устройства самостоятельно выбирают из себя главное, пытаясь взвалить это «главенство» на соседа. После определения главного устройства становится ясна логическая направленность каждого отрезка кабеля — к главному или же от главного. После этого возможна раздача номеров устройствам. После раздачи номеров возможно исполнение обращений к устройствам.

Во время раздачи номеров по шине идёт трафик пакетов, каждый из которых содержит в себе количество портов на устройстве, ориентацию каждого порта — не подключён / к главному / от главного, а также максимальную скорость каждой связи (2 порта и отрезок кабеля). Контроллер 1394 принимает эти пакеты, после чего стек драйверов строит карту топологии (связей между устройствами) и скоростей (наихудшая скорость на пути от контроллера до устройства).

Операции шины делятся на асинхронные и изохронные.

Асинхронные операции — это запись/чтение 32-битного слова, блока слов, а также атомарные операции. Асинхронные операции используют 24-битные адреса в пределах каждого устройства и 16-битные номера устройств (поддержка межшинных мостов). Некоторые адреса зарезервированы под главнейшие управляющие регистры устройств. Асинхронные операции поддерживают двухфазное исполнение — запрос, промежуточный ответ, потом позже окончательный ответ.

Изохронные операции — это передача пакетов данных в ритме, строго приуроченном к ритму 8 КГц, задаваемому ведущим устройством шины путём инициации транзакций «запись в регистр текущего времени». Вместо адресов в изохронном трафике используются номера каналов от 0 до 31. Подтверждений не предусмотрено, изохронные операции есть одностороннее вещание.

Изохронные операции требуют выделения изохронных ресурсов — номера канала и полосы пропускания. Это делается атомарной асинхронной транзакцией на некие стандартные адреса одного из устройств шины, избранного как «менеджер изохронных ресурсов».

Помимо кабельной реализации шины, в стандарте описана и наплатная (реализации неизвестны).

Использование [ править | править код ]

Сеть поверх 1394 и FireNet [ править | править код ]

Существуют стандарты RFC 2734 — IP поверх 1394 и RFC 3146 — IPv6 поверх 1394. Поддерживались в ОС Windows XP и Windows Server 2003. Поддержка со стороны Microsoft прекращена в ОС Windows Vista, однако существует реализация сетевого стека FireNet в альтернативных драйверах от компании Unibrain [5] [6] (версия 6.00 вышла в ноябре 2012 года [7] ).

Поддерживается во многих ОС семейства UNIX (обычно требуется пересборка ядра с этой поддержкой).

Стандарт не подразумевает эмуляцию Ethernet над 1394 и использует совершенно иной протокол ARP. Несмотря на это, эмуляция Ethernet над 1394 была включена в ОС FreeBSD и является специфичной для данной ОС.

Внешние дисковые устройства [ править | править код ]

Существует стандарт SBP-2 — SCSI поверх 1394. В основном используется для подключения внешних корпусов с жёсткими дисками к компьютерам — корпус содержит чип моста 1394—ATA. При этом скорость передачи данных может достигать 27 МБ/с, что превышает скорость USB 2.0 как интерфейса к устройствам хранения данных, равную примерно 43 МБ/с, однако гораздо ниже таковой для USB 3.0.

Поддерживается в ОС семейства Windows с Windows 98 и по сей день. Также поддерживается в популярных ОС семейства UNIX.

MiniDV-видеокамеры [ править | править код ]

Исторически первое использование шины. Используется и по сей день как средство захвата фильмов с MiniDV в файлы. Возможен и захват с камеры на камеру.

Видеосигнал, идущий по 1394, идёт практически в том же формате, что и хранится на видеоленте. Это упрощает камеру, снижая требования к ней по наличию памяти.

В ОС Windows подключённая по 1394 камера является устройством DirectShow. Захват видео с такого устройства возможен в самых разнообразных приложениях — Adobe Premiere, Ulead Media Studio Pro, Windows Movie Maker. Существует также огромное количество простейших утилит, способных выполнять только этот захват. Возможно также и использование тестового инструмента Filter Graph Editor из свободно распространяемого DirectShow SDK.

Использование 1394 c miniDV положило конец проприетарным платам видеозахвата.

Отладчики [ править | править код ]

Интересным свойством контроллеров 1394 является способность читать и писать произвольные адреса памяти со стороны шины без использования процессора и ПО. Это проистекает из богатого набора асинхронных транзакций 1394, а также из её структуры адресации.

Эта возможность чтения и редактирования памяти через 1394 без помощи процессора послужила причиной использования 1394 в двухмашинном отладчике ядра Windows — WinDbg. Такое использование существенно быстрее последовательного порта, но требует ОС не ниже Windows XP с обеих сторон. Также возможность используется в отладчиках для других ОС, например, Firescope для Linux [8] .

Организация устройств IEEE 1394 [ править | править код ]

Устройства IEEE 1394 организованы по трёхуровневой схеме — Transaction, Link и Physical, соответствующие трём нижним уровням модели OSI.

  • Transaction Layer — маршрутизация потоков данных с поддержкой асинхронного протокола записи-чтения.
  • Link Layer — формирует пакеты данных и обеспечивает их доставку.
  • Physical Layer — преобразование цифровой информации в аналоговую для передачи и наоборот, контроль уровня сигнала на шине, управление доступом к шине.

Связь между шиной PCI и Transaction Layer осуществляет Bus Manager. Он назначает вид устройств на шине, номера и типы логических каналов, обнаруживает ошибки.

Данные передаются кадрами длиной 125 мкс. В кадре размещаются временные слоты для каналов. Возможен как синхронный, так и асинхронный режимы работы. Каждый канал может занимать один или несколько временных слотов. Для передачи данных устройство-передатчик просит предоставить синхронный канал требуемой пропускной способности. Если в передаваемом кадре есть требуемое количество временных слотов для данного канала, поступает утвердительный ответ, и канал предоставляется.

Читайте также:  Дополнительные функции стиральной машины

Спецификации FireWire [ править | править код ]

IEEE 1394 [ править | править код ]

В конце 1995 года IEEE принял стандарт под порядковым номером 1394. В цифровых камерах Sony интерфейс IEEE 1394 появился раньше принятия стандарта и под названием iLink.

Интерфейс первоначально позиционировался для передачи видеопотоков, но пришёлся по нраву и производителям внешних накопителей, обеспечивая превосходную пропускную способность высокоскоростных дисков.

Скорость передачи данных — 98,304, 196,608 и 393,216 Мбит/с, которые округляют до 100, 200 и 400 Мбит/с. Длина кабеля — до 4,5 м.

IEEE 1394a [ править | править код ]

В 2000 году был утверждён стандарт IEEE 1394а. Был проведён ряд усовершенствований, что повысило совместимость устройств.

Было введено время ожидания 1/3 секунды на сброс шины, пока не закончится переходный процесс установки надёжного подсоединения или отсоединения устройства.

IEEE 1394b [ править | править код ]

В 2002 году появляется стандарт IEEE 1394b с новыми скоростями: S800 — 800 Мбит/с и S1600 — 1600 Мбит/с. Соответствующие устройства обозначаются FireWire 800 или FireWire 1600, в зависимости от максимальной скорости.

Изменились используемые кабели и разъёмы. Для достижения максимальных скоростей на максимальных расстояниях предусмотрено использование волоконно-оптического кабеля: пластмассового — для длины до 50 метров, и стеклянного — для длины до 100 метров.

Несмотря на изменение разъёмов, стандарты остались совместимы, что позволяет использовать переходники.

12 декабря 2007 года была представлена спецификация S3200 [9] с максимальной скоростью 3,2 Гбит/с. Для обозначения данного режима используется также название «beta mode» (схема кодирования 8B10B (англ.) русск. (англ.) ). Максимальная длина кабеля может достигать 100 метров.

IEEE 1394.1 [ править | править код ]

В 2004 году увидел свет стандарт IEEE 1394.1. Этот стандарт был принят для возможности построения крупномасштабных сетей и резко увеличивает количество подключаемых устройств до гигантского числа — 64 449 [10] .

IEEE 1394c [ править | править код ]

Появившийся в 2006 году стандарт 1394c позволяет использовать витопарный кабель категории 5e (такой же, как и для сетей Ethernet). Возможно использовать параллельно с Gigabit Ethernet, то есть использовать две логические и друг от друга не зависящие сети на одном кабеле. Максимальная заявленная длина — 100 м, Максимальная скорость соответствует S800 — 800 Мбит/с.

Разъёмы [ править | править код ]

Существует четыре (до IEEE 1394c — три) вида разъёмов для FireWire:

Все информационные технологии, так или иначе, крутятся вокруг данных, или проще говоря, информации. Каждая информационная технология имеет дело либо с использованием данных, либо с обработкой или передачей данных. Порт FireWire создан для быстрой передачи данных между различными устройствами. По сравнению с интерфейсом USB 2.0, он обеспечивает более высокую скорость передачи данных. В этой статье расскажем об интерфейсе IEEE 1394, или как его обычно называют, FireWire.

FireWire представляет собой последовательную шину, разработанную Apple в сотрудничестве с другими компаниями. Она стала де-факто стандартом на всех компьютерах компании Apple и многих цифровых устройствах, например, в цифровых видеокамерах, принтерах и др. на компьютерах Apple используется как FireWire, в устройствах от Sony как iLink и Lynx в устройствах от компании Texas Instruments. Несмотря на то, что под разными названиями скрывается один интерфейс, портом FireWire принято называть 6-контактный разъем, а iLink — четырехконтактный.

Дополнительные контакты служат для питания устройства. Как говорилось выше, такая технология служит для высокоскоростной передачи данных в реальном времени между персональным компьютером и периферийными устройствами. Тот факт, что это последовательная шина, означает, что данные передаются по одному биту зараз. По сравнению с более старыми технологиями, предназначенными для передачи данных, например, параллельной шине SCSI (подробнее об интерфейсе SCSI) , такая технология дешевле и выгоднее. Несмотря на то, что такие порты дороже USB 2.0, они имеют более высокую производительность.

FireWire 400 обеспечивает скорость 400 Мбит / в секунду, новый стандарт 800 (IEEE 1394b или firewire 1394 ) обеспечивает скорость до 800 Мбит/в секунду.

FireWire 400, имеет 4 и 6-контактный разъем, новый стандарт FireWire 800 использует 9-контактный разъем.

Обе версии устройств поддерживают технологию Plug and Play (технологию «горячего» подключения устройств), что позволяет подключать периферийные устройства (видеокамеры, внешние жесткие диски и т.д.) без необходимости выключения и перезагрузки компьютера.

По сравнению с USB 2.0, такие порты являются более дорогостоящими для реализации, поэтому этот интерфейс не нашел применения в подключении таких устройств, как флэш-накопители. В продаже есть специальные адаптеры (firewire переходники), позволяющие подключать устройства FireWire к USB.

Для достижения максимальной скорости передачи данных, с портом 800 необходимо использовать 9-контактный кабель. FireWire 800 и 400 имеют обратную совместимость. Однако в режиме обратной совместимости максимальная скорость передачи данных не превышает 400 Мбит / в секунду. Он может обеспечивать питание подключенным устройствам . 6-контактный и 9 контактный порт обеспечивает питание подключенным периферийным устройствам мощностью до 45 Вт.

Для каких устройств используется порт FireWire
Учитывая высокую скорость передачи данных, которую может обеспечить данная технология, интерфейс был изначально предназначен для подключения цифровых видеокамер. Данный интерфейс позволяет передавать данные на большие расстояния, это побудило использовать его в мультимедийных студиях. Он является основным портом для передачи данных в компьютерах Apple, включая настольные компьютеры Mac и MakBook.


Внешние жесткие диски, оснащенные интерфейсом FireWire, могут быть подключены к соответствующему порту на ПК. Они используются для подключения сканеров и принтеров с компьютером. Каждый порт может поддерживать до 63 устройств одновременно. Он может подключать устройства в дереве топологии сети и может поддерживать одноранговую связь.

Хотя этот порт используется не так широко как USB 2.0, новый интерфейс FireWire 800 обеспечивает скорость передачи данных до 800 Мбит в секунду. Это делает его лучшим последовательным интерфейсом, в случае использования устройств и приложений, требующих высокой скорости передачи данных, например, видеокамер.

Везде, где есть потребность в высокой скорости передачи данных на большие расстояния, интерфейс FireWire 400 или FireWire 800 является предпочтительным выбором.

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *