0

Выбор кабеля для rs 485

Вы просматриваете архив форума.

Этот форум работает только в режиме просмотра и поиска.

Действующий форум переведен на новый движок и
находится по адресу www.microchip.su

Какой кабель нужен для RS485
Автор: AlexShip ()
Дата: 26/04/2003 10:08

Подскажите пожалуйста, насколько жесткие требования предъявляются к кабелю для
построения системы на RS485?
Можно ли использовать кабель RS232 3-проводный, например? Там скрутка из 3-х
проводов в экране.
Выпускаются ли промышленно кабели специально для RS485?

Re: Какой кабель нужен для RS485
Автор: Vladimir ()
Дата: 26/04/2003 11:02

AlexShip писал(а):
>
> Подскажите пожалуйста, насколько жесткие требования
> предъявляются к кабелю для
> построения системы на RS485?

Это зависит от скорости передачи и от согласования нагрузок

> Можно ли использовать кабель RS232 3-проводный, например? Там
> скрутка из 3-х
> проводов в экране.

Конечно. Экран это всегда хорошо. В RS485 к нему можно прицепить землю (на
обоих концах. ). А по третьему проводу передавать питание. Таким образом можно
отказаться от гальванически развязанного источника питания на одном из концов.

> Выпускаются ли промышленно кабели специально для RS485?

Сомневаюсь. Слишком не определен он по скорости передачи и используемым
разъемам. Хотя, чем черт не шутит. Ведь волновое сопротивление стандартизовано.

Re: Какой кабель нужен для RS485
Автор: Koka ()
Дата: 26/04/2003 11:23

AlexShip писал(а):
>
> Выпускаются ли промышленно кабели специально для RS485?

Точно могу сказать, что выпускаются, по крайней мере, буржуйской
промышленностью. Siemens, например, для своих 485-х интерфейсов выпускает
кабель (пишу то что написано на кабеле): SIEMENS SIMATIC NET PROFIBUS FC 6XV1
830-OEH10 * E119100 (UL) CMX 60 C (SHIELDED) AWG 22
^
|
град.

Re: Какой кабель нужен для RS485
Автор: Eugene Sitnikov ()
Дата: 27/04/2003 15:48

Если мне не изменяет склероз, то кабель должен быть AWG24 (цифры это сечение) и
120 ом волновое сопротивление. витая пара в экране.

Re: Какой кабель нужен для RS485
Автор: Wasil ()
Дата: 27/04/2003 18:28

А какое волновое у кабеля:
PCnet 65702 2pair 24 AWG FTP CABLE ETL VERIFIED TIA/EIA CAT 5 000942712
FEET

кто что может прояснить?
Можно конечно измерить, но а как из названия выяснить не измеряя?
Спасибо ответившим!

Re: Какой кабель нужен для RS485
Автор: Greg ()
Дата: 27/04/2003 23:33

если пятая категория, то что-нибудь порядка 100+-15 Ом @ 1-100МГц. Конкретно по этому кабелю сходи
на сайт производителя http://www.pcnet-cable.com.tw

Re: Какой кабель нужен для RS485
Автор: Wasil ()
Дата: 28/04/2003 10:43

Спасибо! т.е. на концах должно быть по 100 Ом?

Re: Какой кабель нужен для RS485
Автор: Greg ()
Дата: 28/04/2003 12:25

". на концах должно быть по 100 Ом?"
да,

только имейте в виду, на высоких частотах кабель
"витая пара 5 кат." достаточно "нежный" в инсталляции. Не перегибать (типовой мин. радиус
изгиба порядка 40 мм), не перекручивать, сильно не тянуть (тип. макс. 100Н), не пережимать (в
связке). При заделке разъема раскручивайте по минимуму.

Re: Какой кабель нужен для RS485
Автор: Wasil ()
Дата: 28/04/2003 14:42

ещё один спасибо.

Спасибо всем
Автор: AlexShip ()
Дата: 28/04/2003 16:15
Re: Какой кабель нужен для RS485
Автор: AlexShip ()
Дата: 28/04/2003 16:20

>> > Можно ли использовать кабель RS232 3-проводный, например? Там
> > скрутка из 3-х
> > проводов в экране.
>
> Конечно. Экран это всегда хорошо. В RS485 к нему можно
> прицепить землю (на
> обоих концах. ). А по третьему проводу передавать питание.
> Таким образом можно
> отказаться от гальванически развязанного источника питания на
> одном из концов.
>

На сколько я знаю, землю следует подавать по отдельному проводу, а не по экрану.
Не совсем понял по-поводу питания.

А я не сомневаюсь.
Автор: MikePic ()
Дата: 28/04/2003 17:19

Там вы много чего интересного по кабельной продукции найдёте. И что меня больше
всего удивило, что для 485-ого наши тоже выпускают, даже ТУ на него есть!

Не всегда
Автор: MikePic ()
Дата: 28/04/2003 17:23

. согласующее сопротивление, естесственно определяется волновым кабеля, а
последнее – его маркой. Надо смотреть у производителя, либо в соответствующих
каталогах. Если расстояние небольшое и скорости низкие, то ессно, можно не
задумываться особо: 100 или 120 Ом.

Цель настоящей статьи – предоставить базовые понятия по выбору элементов соединений для сетей на основе RS-485.

Кабель

Кабели, по которым осуществляется передача данных, могут быть совершенно разными. Это могут быть отдельные провода, витые пары различных типов: экранированные и неэкранированные. Однако, чем ближе применяемый кабель к рекомендациям, данных в предыдущей части статьи, тем больше вероятность, что построенная вами сеть будет функционировать быстро и надёжно.

Обычные провода. Если вы используете контроллеры Segnetics, то вы уже наверняка создавали сеть простейшего вида. Она идёт вразрез со всеми рекомендациями, но работает довольно таки устойчиво и на максимальной скорости. Эта сеть была создана вами для загрузки программы и соединяла конвертер, подключенный к компьютеру с контроллером (Рисунок 1).

Рис. 1. Простейший кабель – два обычных провода. Для связи на расстояниях до 10 метров нет ничего предосудительного в их использовании даже без согласующих резисторов и общего провода.

Однако, не стоит считать, что на малых расстояниях (например, внутри щита) совсем не нужно обращать внимание на разводку сети. Если контроллеры имеют разные источники питания, то дренажный провод будет совсем не лишним. Рано или поздно это обязательно пригодится! Другое дело, что предохранители и токоограничивающие резисторы скорее всего будут лишней тратой и сил и денег.

Витая пара. Несмотря на то, что RS-485 может успешно осуществлять передачу с использованием обычных одиночных проводов, он должен использоваться с проводкой, обычно называемой "витая пара".

Рис. 2. Витая пара для больших токов.

Рис. 3. Витая пара для передачи видеосигнала.
Более подробно Цифровой мультимедийный интерфейс HDMI

Рис. 4. Всем знакомые "компьютерные" витые пары (слева направо): UTP, FTP и STP.

Любая витая пара лучше, чем два одиночных провода, но параметры этих витых пар далеки от рекомендуемых. Это не позволяет организовывать протяженные устойчивые сети на базе RS485.

Например, силовая пара не имеет экранирования и определённого волнового сопротивления. Однако, большое сечение проводников и высокая устойчивость к излому, позволяет использовать её в высоконагруженных (большое количество контроллеров) сетях малой протяжённости (десятки метров).

Видеокабель характеризуется малым затуханием сигнала и прекрасной изоляцией. Но имеет волновое сопротивление всего 75 ом и поэтому высоконагруженную сеть на его базе построить не удастся. Однако, если в проводке здания такой свободный кабель уже присутствует, то для связи на сотню-другую метров между парой-тройкой контроллеров и компьютером он вполне сгодится.

Компьютерные витые пары, кроме своей откровенной дешевизны и большой вероятности, что они уже наверняка проложены в проводке здания, отличаются большим электрическим сопротивлением проводников, обусловленным их малым сечением. Это накладывает ограничение на общую нагрузку в сети. При этом волновое сопротивление кабеля близко к 100 омам, что является неплохим показателем. На таком кабеле вполне достижимы расстояния в 300-400 метров между двумя контроллерами или контроллером и компьютером. При увеличении количества контроллеров в сети дальность связи падает – сказывается малое сечение проводников.

Читайте также:  Вставка фигур в ворде

При использовании "компьютерных" или видеокабелей знаковым признаком перегрузки сети является всякое пропадание связи при добавлении в сеть ещё одного контроллера. Знаковым признаком превышения допустимой длины кабеля является отсутствие связи между самыми дальними контроллерами в сети, но связь между более ближними контроллерами при этом функционирует устойчиво и без замечаний.

Применение специализированного кабеля во многих простейших случаях обойдётся в гораздо большие деньги, не имея при этом никаких веских обоснований, кроме как "так положено по стандарту". Но и устойчивость сети такие кабели дадут в разы, а то и на порядки большую.

Вот неполный список специализированных кабелей, которые легко найти за несколько минут:

Тип Описание
КИПЭКГнг(А)-HF Nx2x0,60 Кабели для промышленного интерфейса RS-485 групповой прокладки, пожаробезопасные, бронированные
КИПвЭКнг(А)-HF Nx2x0,78 Кабели для промышленного интерфейса RS-485 групповой прокладки, пожаробезопасные, бронированные
КИПвЭВБВнг(А)-LS Nx2x0,78 Кабели для промышленного интерфейса RS-485 групповой прокладки, пожаробезопасные, бронированные
КИПвЭВБВнг(А)-LS Nx2x0,78 Кабели для промышленного интерфейса RS-485 групповой прокладки, пожаробезопасные, бронированные
КИПЭКГнг(А)-HF Nx2x0,60 Кабели для промышленного интерфейса RS-485 групповой прокладки, пожаробезопасные, бронированные
КИПвЭнг(А)-HF Nx2x0,78 Кабели для промышленного интерфейса RS-485 групповой прокладки, пожаробезопасные
КИПЭБнг(А)-HF Nx2x0,60 Кабели для промышленного интерфейса RS-485 групповой прокладки, пожаробезопасные, бронированные
КИПвЭКГнг(А)-HF Nx2x0,78 Кабели для промышленного интерфейса RS-485 групповой прокладки, пожаробезопасные, бронированные
КИПвЭВКВнг(А)-LS Nx2x0,78 Кабели для промышленного интерфейса RS-485 групповой прокладки, пожаробезопасные, бронированные
КИПЭВнг(А)-LS Nx2x0,60 Кабели для промышленного интерфейса RS-485 групповой прокладки, пожаробезопасные, бронированные
КИПвЭВнг(А)-LS Nx2x0,78 Кабели для промышленного интерфейса RS-485 групповой прокладки, пожаробезопасные
КИПЭнг(А)-HF Nx2x0,60 Кабели для промышленного интерфейса RS-485 групповой прокладки, пожаробезопасные, бронированные
КИПвЭБнг(А)-HF Nx2x0,78 Кабели для промышленного интерфейса RS-485 групповой прокладки, пожаробезопасные, бронированные
КИПЭКГнг(А)-HF Nx2x0,60 Кабели для промышленного интерфейса RS-485 групповой прокладки, пожаробезопасные, бронированные
КИПЭКнг(А)-HF Nx2x0,60 Кабели для промышленного интерфейса RS-485 групповой прокладки, пожаробезопасные, бронированные
КИПЭВКГнг(А)-LS Nx2x0,60 Кабели для промышленного интерфейса RS-485 групповой прокладки, пожаробезопасные, бронированные
КИПЭВКВнг(А)-LS Nx2x0,60 Кабели для промышленного интерфейса RS-485 групповой прокладки, пожаробезопасные, бронированные

Применение специализированного кабеля позволит построить гарантированно беспроблемную и работающую сеть передачи данных на базе любых устройств, использующих RS485.

Согласующие резисторы

Согласующий резистор – это просто резистор, который установлен на крайних концах кабеля (Рис. 5). В идеале, сопротивление согласующего резистора равно волновому сопротивлению кабеля.

Если сопротивление согласующих резисторов не равно волновому сопротивлению кабеля, произойдет отражение, т.е. сигнал вернется по кабелю обратно. Значительные расхождения могут вызвать отражения, достаточно большие для того, чтобы привести к ошибкам в данных.

Контроллеры Segnetics имеют встроенные согласующие резисторы (так называемые "терминаторы" – такое название дано им потому, что они уничтожают рассогласование). Номинал согласующих резисторов, установленных в контроллере равен 120 омам. В заводской настройке контроллера согласующий резистор отключен. При необходимости, его можно включить, просто установив нужную перемычку:

Рис. 6. Расположение перемычек в контроллере SMH2010.

Рис. 7. Расположение перемычки в контроллере Pixel.

Внимание! Конвертеры USB RS485 или RS232 RS485 зачастую не имеют встроенных согласующих резисторов! Поэтому нужно использовать внешний согласующий резистор, который подключается напрямую к клеммам конвертера:

Рис. 8. Использование внешнего сопротивления для согласования кабеля.

Максимальное число передатчиков и приемников в сети

Простейшая сеть на основе RS-485 состоит из одного управляющего устройства (например, контроллер) и одного управляемого (например, преобразователь частоты). Расстояние между ними редко превышает десять метров.

Более сложные сети имеют, кроме управляющего устройства, ещё несколько управляемых. В этом случае сеть имеет не очень большую протяжённость (максимум десятки метров) и имеет стабильные условия функционирования. Под стабильностью условий подразумевается, что все устройства сгруппированы на довольно-таки маленькой площади (внутри шкафа или два-три рядом расположенных шкафа) и в процессе эксплуатации оборудования отсутствуют такие неожиданности, как неумелое расположение силовых кабелей и оборудования монтажниками сторонних организаций.

Рис. 9. Пример локальной распределённой системы управления.

Самую большую сложность имеют сети, использующиеся для диспетчеризации. Как правило они совмещают максимальную протяжённость и большое количество опрашиваемых устройств, размещённых по всему зданию.

В этом случае легко достигнуть предела нагрузочной способности сети: 31 шкаф управления с одной стороны и конвертер с компьютером с другой стороны.

Кроме этого, не всегда достаточно и допустимой длины сети (1000 метров).

И, наконец, появляется проблема пропускной способности сети.

Сети диспетчеризации

Как упоминалось выше, при создании высоконагруженной и протяжённой сети возникает четыре проблемы:

  1. Большая протяжённость сети.
  2. Большое количество устройств в сети.
  3. Высокий уровень помех в сети.
  4. Ограниченная пропускная способность сети.

При этом, последняя проблема всегда является следствием первых трёх.

Большая протяжённость сети. Стандартом RS-485 общая длина линии связи ограничена 1000 метрами. Обойти это ограничение собственными силами контроллеров невозможно (в пределах поставленной задачи).

Однако, существуют специальные усилители сигналов RS-485. Они называются "Повторители" или "Репитерами" (Repeater). Их назначение состоит в том, чтобы ретранслировать все сигналы, проходящие по сети.

Таким образом, подключив в компьютеру, например, 10 шкафов управления на расстоянии 500 метров, подключаем к концу полученной сети повторитель и получаем ещё 1000 метров допустимой длины! Таким образом, устанавливая повторители, сеть можно наращивать до довольно-таки больших расстояний (десятки километров).

Рис. 10. Пример увеличения дальности связи до 2 км за счёт использования повторителя.

Большое количество устройств в сети. Стандартом RS-485 нагрузочная способность сети ограничена 32-мя устройствами. Т.е. это компьютер + 31 шкаф управления. Обойти это ограничение собственными силами контроллеров невозможно (опять же, в пределах поставленной задачи).

Повторители решают и эту проблему. Сеть может состоять из множества сегментов: компьютер, 10 шкафов управления, повторитель, ещё 10 шкафов. И ещё и ещё.

Нужно только обязательно помнить, что повторитель такое же устройство, как и контроллер: он нагружает сеть и для него существуют все правила подключения, которые описывает стандарт RS-485.

Высокий уровень помех в сети.

Повторители, кроме усиления сигнала, становятся преградой для многих видов помех. А повторители с опторазвязкой формируют электрически изолированные друг от друга сегменты одной сети. В этом случае даже кабели, применяемые в сегментах, могут быть с различными характеристиками!

Но с помехами внутри сегмента они бороться не могут. С этим уже придётся справляться как проектировщику (закладывая в проект оптимальные типы кабелей и трассы их прокладки), так и наладчику (выбирая правильную точку заземления экрана кабеля и подбирая нужную скорость передачи данных в сети).

Ограниченная пропускная способность сети.

При использовании Modbus-RTU (мастер по очереди опрашивает слейвы), время полного опроса всей системы пропорционально количеству устройств. Например, если опрос занимает передачу десятка байт туда и обратно, на скорости 9600 это займет 20 миллисекунд. Немного? А теперь умножьте на 256 – получите 5 секунд. Если для пожарной системы это еще может быть приемлемо, то для системы контроля доступа, пожалуй, тяжело найти клиента, готового ждать 5 секунд после поднесения карты. Многие за это время выломают дверь и еще и настучат по голове тому, кто такую систему установил.

Поэтому, планируя большую и расветвлённую сеть, обязательно просчитывайте трафик и частоту опроса в этой сети. Что толку считывать 10 раз в секунду показания датчика наружной температуры, если достаточно одного раза за 10 минут. И это касается абсолютно любой переменной, "путешествующей" в сети.

Читайте также:  Золотой век в истории россии

RS-485 (EIA/TIA-485) — это стандарт, определяющий электрические характеристики приемников и передатчиков информации для использования в балансных цифровых многоточечных системах. Интерфейс RS-485 является одним из наиболее распространённых стандартов физического уровня в современных средствах промышленной автоматизации.

Как было сказано выше стандарт содержит электрические характеристики приемников и передатчиков, которые могут быть использованы для передачи двоичных сигналов в многоточечных сетях, при этом стандарт не оговаривает другие характеристики: такие как качество сигнала, протоколы обмена, типы соединителей для подключения, линии связи. В результате неопределенности потребители часто испытывают трудности при подключении того или иного оборудования к сети RS-485. Порой неправильно разведенная сеть RS-485 способна свести к нулю затраченные на повышение автоматизации усилия, и может стать причиной постоянных отказов, сбоев и ошибок в работе оборудования. Цель данной статьи – предоставить пользователям рекомендации по подключению и практической реализации систем передачи данных на основе интерфейса RS-485.

1 Краткое описание стандарта

В основе интерфейса RS-485 лежит способ дифференциальной (балансной) передачи данных. Суть данного метода заключается в следующем: по одному проводу (условно линия А) передается нормальный сигнал, а по второму проводу (условно линия В) передается инвертированный сигнал, таким образом, между двумя проводами витой пары всегда существует разность потенциалов (рисунок 1). Для случая логической «единицы» разность потенциалов положительна, для логического «нуля» — отрицательна.

Рисунок 1 — Диаграмма дифференциальной (балансной) передачи данных

Преимуществом дифференциальной (балансной) передачи данных является высокая устойчивость к синфазным помехам. Синфазная помеха — помеха, действующая на обе линии связи одинаково. Зачастую линии связи прокладываются в местах подверженных неоднородным электромагнитным полям, электромагнитная волна, проходя через участок линии связи, будет наводить в обоих проводах потенциал. В случае RS-232 интерфейса полезный сигнал, который передается потенциалом относительно общего «земляного» провода был бы утерян. При дифференциальной передаче не происходит искажения сигнала в виду того, что помеха одинаково действует на оба проводника и наводит в них одинаковый потенциал, в результате чего разность потенциалов (полезный сигнал) остается неизменной. По этой причине линии связи интерфейса RS-485 представляют собой два скрученных между собой проводника и называются витой парой. Прямые выходы «А» подключаются к одному проводу, а инверсные «В» ко второму проводу (рисунок 2). В случае неправильного подключения выходов к линиям приемопередатчики не выйдут из строя, но при этом правильно функционировать они не будут.

Рисунок 2 — Конфигурация сети RS-485

2 Рекомендации по подключению

Конфигурация сети представляет собой последовательное присоединение приемопередатчиков к витой паре (топология «шина»), при этом сеть не должна содержать длинных ответвлений при подключении устройств, так как длинные ответвления вызывают рассогласования и отражения сигнала (рисунок 3).

Стандарт предполагает, что устройства подключаются непосредственно к шине. При этом скрутки и сращивания кабеля не допускаются. При увеличении длины линий связи при высокой скорости передачи данных имеет место так называемый эффект длинных линий. Он заключается в том, что скорость распространения электромагнитных волн в проводниках ограничена, для примера у проводника с полиэтиленовой изоляцией она ограничена на уровне около 206 мм/нс. Помимо этого электрический сигнал имеет свойство отражаться от концов проводника и его ответвлений. Для коротких линий подобные процессы протекают быстро и не оказывают влияния на работу сети, однако при значительных расстояниях в сотни метров отраженная от концов проводников волна может исказить полезный сигнал, что приведет к ошибкам и сбоям.

Проблему отражений сигнала в интерфейсе RS-485 решают при помощи согласующих резисторов — «терминаторов», которые устанавливаются непосредственно у выходов двух приемопередатчиков максимально отдаленных друг от друга. Следует отметить, что в большинстве случаев «терминаторы» уже смонтированы в потребительских устройствах и подключаются к сети при помощи соответствующих перемычек на корпусе устройства. Номинал «терминатора» соответствует волновому сопротивлению кабеля, при этом нужно помнить, что волновое сопротивление кабеля зависит от его характеристик и не зависит от его длины. К примеру, для витой пары UTP-5, используемой для прокладки Ethernet волновое сопротивление составляет 100 ±15 Ом. Специализированный кабель Belden 9841…9844 для прокладки сетей RS-485 имеет волновое сопротивление 120 Ом, поэтому расчетами резистора — «терминатора» можно пренебречь и использовать 120 Ом.

Рисунок 3 — Примеры топологий сетей RS-485

Экранированные витые пары (например, кабели Belden 9841, 3106A) рекомендуется применять в особо ответственных системах, а также при скоростях обмена свыше 500 Кбит/сек.

Нужно отметить, что для обеспечения отказоустойчивости и помехозащищенности с увеличением длины линий связи скорость передачи желательно уменьшить. Зависимость скорости обмена от длины линий представлена на рисунке 4. Данная зависимость может отличаться при прочих условиях и носит скорее рекомендательный характер.

Рисунок 4 — Зависимость скорости обмена от длины линии связи

Согласно стандарту RS-485 (EIA/TIA-485) передатчик должен обеспечивать передачу данных для 32 единичных нагрузок (под единичной нагрузкой подразумевается приемник с входным сопротивлением 12 кОм). В настоящее время производятся приемопередатчики с входным сопротивлением равным 1/4 (48 кОм) и 1/8 (96 кОм) от единичной нагрузки. В этом случае количество подключенных к сети устройств может быть увеличено до: 128 и 256 соответственно. Допускается использовать устройства с различным входным сопротивлением в одной сети, важно чтобы суммарное сопротивление было не менее 375 Ом.

Электрические характеристики интерфейса приведены в таблице 1.

Параметр Значение
Максимальное число приемников/передатчиков 32/32
Максимальная длина кабеля, м 1200
Максимальная скорость передачи данных, Мбит/с 10
Уровень логической «1» передатчика, В +1,5…+6
Уровень логического «0» передатчика, В –1,5…–6
Диапазон синфазного напряжения передатчика, В –1…+3
Максимальный ток короткого замыкания передатчика, мА 250
Допустимое сопротивление нагрузки передатчика, Ом 54
Порог чувствительности приемника, мВ ± 200
Допустимый диапазон напряжений приемника, В –7…+12
Уровень логической «1» приемника, мВ более +200
Уровень логического «0» приемника, мВ менее –200
Входное сопротивление приемника, кОм 12

Стандарт RS-485 (EIA/TIA-485) не регламентирует, по какому протоколу устройства сети должны связываться друг с другом. Наиболее распространенными протоколами связи на данный момент являются: Modbus, ProfiBus, LanDrive, DMX512 и другие. Передача информации осуществляется полудуплексно в большинстве случаев по принципу «ведущий» — «ведомый».

Порог чувствительности приемника составляет ± 200 мВ, то есть при разнице потенциалов на входе приемника в диапазоне от минус 200 мВ до плюс 200 мВ его выходное состояние будет находиться в состоянии неопределенности. Разность потенциалов более 200 мВ приемник принимает как логическую «1», а разность потенциалов менее минус 200 мВ приемник принимает как логический «0». Состояние неопределенности может произойти, когда ни один из передатчиков не активен, отключен от сети, либо находится в «третьем состоянии», либо все устройства сети находятся в режиме приема информации. Состояние неопределенности крайне нежелательно, так как оно вызывает ложные срабатывания приемника из-за несинфазных помех.

Использование защитного смещения позволяет исключить возможность возникновения неопределенного состояния в сети. Для этого линию А необходимо подтянуть резистором к питанию (pullup), а линию В резистором — к «земле» (pulldown). В результате, с учетом «терминаторов», получится резистивный делитель напряжения. Для надежной работы сети необходимо обеспечить смещение порядка 250…300 мВ (рисунок 5).

Читайте также:  Балансный и небалансный кабель отличия

Рисунок 5 — Защитное смещение

Рассмотрим ситуацию, когда в сети находятся два устройства. Нам необходимо получить смещение 250мВ, при этом в сети подключены два терминальных резистора по 120Ом, и имеется источник напряжения +5В, оба приемника обладают единичной нагрузкой— их сопротивление составляет 12кОм.

Учитывая, что терминальные резисторы по 120Ом и оба приемника по 12кОм включены параллельно, то их общее сопротивление равняется:

Rсети = (Rобщ.терм · Rобщ.вх) / (Rобщ.терм + Rобщ.вх) = (60 · 6000) / (60 + 6000) = 60Ом.

Рассчитаем ток в цепи смещения:

При этом последовательное сопротивление цепи смещения составит:

Получаем сопротивление резисторов смещения:

Rсм = 1140 / 2 = 570Ом.

Выбираем ближайший номинал 560Ом.

Рисунок 6— Диаграмма передачи данных при использовании защитного смещения

Исходя из расчета защитного смещения можно заметить, что через делитель напряжения постоянно протекает ток (для случая выше это 4,2мА), что может быть недопустимым в системах с малым энергопотреблением. Это является серьезным недостатком защитного смещения.

Снизить потери можно увеличением номинала резисторов согласования до 1,1кОм и выше, но в данном случае придется искать компромисс между энергопотреблением и надежностью сети.

Для гальванически развязанной линии резисторы смещения следует подтягивать к «земле» и питанию со стороны изолированной линии.

Для защиты от помех экран витой пары следует заземлять в одной точке, при этом стандарт не оговаривает в какой, поэтому часто экран кабеля заземляется на одном из его концов. Иногда причиной возникновения ошибок при передаче сигнала является работающий поблизости радиопередатчик. Чтобы устранить влияние радиосигнала на передающий кабель достаточно установить высокочастотный конденсатор малой емкости между экраном кабеля и заземлением электрической сети порядка 1…10нФ.

Если приборы, объединенные в одну сеть, питаются от различных источников или находятся на значительном удалении друг от друга, то необходимо дополнительным дренажным проводом объединить «земли» всех устройств. Это правило исходит из того, что разность потенциалов между линией и «землей» по стандарту не должна превышать от минус 7 до плюс 12 В. В случае, когда устройства находятся на значительном расстоянии друг от друга, либо питаются от разных источников разность потенциалов на входе приемопередатчика может превысить в несколько раз допустимый диапазон, что приведет к выходу из строя приемопередатчика. При этом следует учитывать, что подключение устройства к сети RS-485 нужно начинать именно с дренажного провода, а производя отключение устройства в последнюю очередь отсоединять дренажный провод. Для ограничения «блуждающих» токов в дренажном проводе его следует подключать к каждой сигнальной земле через резистор номиналом 100 Ом мощностью 0,5 Вт, помимо этого необходимо через такой же резистор 100 Ом 0,5 Вт подключить дренажный провод к защитному заземлению. Рекомендуем осуществлять защитное заземление дренажного провода в одной точке, чтобы исключить постоянное протекание «блуждающего» тока через него по сравнению со случаем, когда дренажный провод заземляется у каждого устройства. Не следует использовать экран кабеля в качестве дренажного провода.

Рисунок 7 — Использование дренажного провода для уравнивания
потенциала «земель»

Для защиты сетей от синфазных перенапряжений и импульсных помех менее 2 кВ достаточно использовать приемопередатчики с гальванической развязкой. Если же высокий потенциал будет приложен дифференциально, т.е. к одному проводнику линии, то приемопередатчик будет поврежден, так как разность потенциалов между проводниками должна находиться в диапазоне от минус 7 до плюс 12 В.

Защита устройств сети RS-485 от дифференциальных перенапряжений составляющих десятки киловольт, например, попадание разряда молнии в линию, осуществляется за счет использования специальных защитных устройств. В простейшем случае все проводники линии шунтируются ограничителями напряжения на «землю» (рисунок 8а). Если заземление линии невозможно, то проводники линии шунтируются ограничителями между собой (рисунок 8б). Защита, организованная на варисторах, супрессорах, газоразрядных трубках, способна выдерживать лишь кратковременные всплески напряжения. Дополнительную защиту от токов короткого замыкания в линиях можно обеспечить при помощи установки в линию плавких предохранителей.

Рисунок 8 — Варианты защиты сети RS-485 от перенапряжений и импульсных помех

Как правило, устройства, работающие в сетях RS-485 помимо «терминаторов» имеют встроенную защиту от перенапряжений и импульсных помех. Подробнее об этом можно прочитать в руководстве по эксплуатации на конкретное устройство. Помимо этого на рынке существует множество готовых устройств подавления импульсных помех, принцип действия которых также основан на применении варисторов и газоразрядных трубок. Стоит лишь помнить, что каждое дополнительное устройство защиты, установленное в сети, вносит дополнительную емкость, эквивалентную емкости кабеля длинной 120…130 м.

1. Следует избегать прокладки витой пары совместно с силовыми цепями, особенно в общей оплетке. Линии связи должны находиться не ближе чем 0,5 м от силовых цепей. Пересечение линий связи с силовыми цепями (если этого не избежать) желательно делать под прямым углом. Не рекомендуется использовать в качестве витой пары кабели менее 0,326 мм 2 (22 AWG). Не допускается наличие «скруток» для сращивания кабеля.

2. При использовании витой пары типа UTP-5 свободные пары рекомендуется использовать в качестве дренажного провода, либо держать их в резерве, в случае повреждения главной витой пары.

3. Сеть должна иметь топологию «шина», не допускаются длинные ответвления от основной «шины».

4. Если для конечной системы не требуется высокого быстродействия, то не рекомендуется устанавливать скорость передачи данных «как можно выше». Наоборот максимальная надежность сети достигается на низких скоростях передачи.

5. Согласующие резисторы «терминаторы» устанавливаются в наиболее удаленных точках сети RS-485, обычно они уже смонтированы в устройствах пользователя, поэтому достаточно их только подключить перемычками или переключателями согласно руководству по эксплуатации на конкретное устройство. Сопротивление согласующих резисторов должно равняться волновому сопротивлению используемого кабеля, в противном случае их установка может только навредить.

6. В сетях, где возможно возникновение состояния неопределенности необходимо с целью минимизации ошибок и сбоев устанавливать защитное смещение порядка 250…300 мВ. Необходимо учитывать при этом, что ток потребления системы увеличится.

7. Для защиты от помех экран витой пары заземляется в любой точке, но один раз.

8. При питании удаленного оборудования от различных источников рекомендуется использовать дренажный провод для уравнивания потенциала «земель», при этом следует помнить, что подключение устройства к сети следует начинать именно с дренажного провода, а при отключении устройства в последнюю очередь отключать дренажный провод.

9. Для защиты оборудования, а так же обслуживающего его персонала рекомендуется использовать устройства, имеющие гальваническую развязку.

10. Не стоит пренебрегать дополнительными устройствами защиты от перенапряжений и импульсных помех.

Компания ООО «Энергия-Источник» предлагает следующие приборы для передачи и преобразования сигналов интерфейса RS-485:

  • барьер искрозащиты с гальванической развязкой ЭнИ-БИС-3401-Ех-RS;
  • пассивный барьер искрозащиты ЭнИ-БИС-113-Ех;
  • пассивный барьер искрозащиты ЭнИ-БИС-115-Ех;
  • компактный пассивный барьер искрозащиты ЭнИ-БИС-1013-Ex-DC(+);
  • компактный пассивный барьер искрозащиты ЭнИ-БИС-1015-Ex-DC(+);
  • преобразователь интерфейсов ЭнИ-401 (RS-232 – RS-485);
  • преобразователь интерфейсов ЭнИ-402 и ЭнИ-402БП (USB – RS-485);
  • преобразователь интерфейсов ЭнИ-404 (BLUETOOTH – RS-485);
  • GSM/GPRS модем ЭнИ-405 (GSM/GPRS – RS-485/RS-232).

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *