0

Зарядное устройство для буферного режима

Буферное зарядное устройства (БЗУ) представляет собой стабилизированный источник напряжения, имеющий ограничитель выходного тока. Напряжение на выходе БЗУ соответствует напряжению на заряженном аккумуляторе. Если к такому устройству подключить требующую подзарядки аккумуляторную батарею, то зарядный ток будет определяться разностью напряжений на батарее и на выходе БЗУ, а также внутренним сопротивлением аккумулятора. В процессе зарядки зарядный ток уменьшается, пока не станет равным току саморазряда аккумулятора. В таком состоянии аккумулятор может находиться неограниченно долго – в течении всего срока эксплуатации. Если к БЗУ будет подключен сильно разряженный или неисправный (содержащий короткозамкнутые пластины) аккумулятор, то зарядный ток может существенно возрасти. Чтобы он не мог превысить безопасные значения в БЗУ имеется ограничитель выходного тока.

Буферный режим зарядки свинцовых аккумуляторных батарей широко используется в источниках бесперебойного питания. Опыт эксплуатации таких источников, а также рекомендации изготовителей аккумуляторов для них, говорят о том, что буферная зарядка весьма благотворно сказывается на сроке службы свинцовых аккумуляторов.

Буферная зарядка автомобильных аккумуляторов не получила широкого распространения по нескольким причинам. Полная зарядка от БЗУ сильно разряженного аккумулятора занимает больше времени, чем обычная зарядка. Существенные изменения зарядного тока, характерные для буферной зарядки, не соответствуют рекомендациям изготовителей аккумуляторов, которые обычно предлагают заряжать аккумулятор стабильным током, численно равным одной десятой ёмкости батареи. Главным препятствием на пути изготовления и использования БЗУ является то, что данное устройство должно работать постоянно, если автомобиль, на котором установлен заряжаемый аккумулятор, находится в гараже. Это требование накладывает на схемотехнику и конструкцию БЗУ повышенные требования по надёжности, а также электро и пожаробезопасности.

Вопросы, связанные с целесообразностью использования БЗУ с автомобильными аккумуляторами и зависимостью их срока службы от режима зарядки, выходят за рамки данной статьи. Отметим только, что режим БЗУ используется во многих фирменных зарядных устройствах для автомобильных аккумуляторов. Они автоматически переходят в режим БЗУ по окончании зарядки аккумулятора стабильным током и находятся в этом режиме пока аккумулятор не будет отключен. Также, по мнению автора, производители аккумуляторов не слишком заинтересованы в продлении сроков эксплуатации их продукции. В связи с этим рекомендуемый ими режим зарядки не следует воспринимать как единственно возможный.

У автора аккумуляторная батарея 6СТ-55 Подольского аккумуляторного завода прослужила 13 лет. Автомобиль, на котором она была установлена, эксплуатировался круглый год и хранился в неотапливаемом гараже. В течении всего срока эксплуатации батарея была подключена к БЗУ, которое отключалось только на время поездок.

Внешний вид БЗУ представлен на фотографии.

На верхней панели устройства имеется кнопка выключателя сетевого питания. Справа от кнопки под завинчивающейся крышкой находится ось переменного резистора, позволяющего регулировать выходное напряжение БЗУ. Далее, справа от переменного резистора, расположен выходной разъём. На передней панели имеется закрытое оргстеклом окно, за которым находится табло измерителя выходного тока и напряжения, а также два зелёных светодиода, сигнализирующих об исправности БЗУ. Справа от окна имеется таблица, содержащая ряд значений выходного напряжения БЗУ, которые следует устанавливать в зависимости от температуры в гараже. Свойства свинцовых аккумуляторов таковы, что при повышенных температурах напряжение на выходе БЗУ следует уменьшать, а при пониженных – увеличивать. Температурный коэффициент для свинцового аккумулятора с номинальным напряжением 12 Вольт по разным источникам составляет от – 30 до -15 мВ/°С. Таблица составлена исходя из значения -20 мВ/°С.

На следующем рисунке представлена схема электрическая принципиальная БЗУ.

Автор неоднократно убеждался в том, что надёжность работы моточных изделий – электромоторов, трансформаторов, реле и т.п., эксплуатируемых в неотапливаемых помещениях, существенно снижается. Как правило причиной отказов является образование короткозамкнутых витков. Видимо это связано с повышенной влажностью и большими перепадами температуры, способствующими разрушению лаковой изоляции обмоточного провода. В данном устройстве для повышения надёжности используются два силовых трансформатора, обмотки которых включены последовательно. При таком соединении межвитковое замыкание в любом из трансформаторов не вызывает аварийной ситуации – существенного повышения токов в обмотках, перегрева и т.п. Более того – БЗУ в этом случае не теряет работоспособность – продолжает поддерживать аккумулятор в заряженном состоянии. Светодиоды HL1 и HL2 сигнализируют об исправности трансформаторов. Если один из них перестаёт светиться, то соответствующий трансформатор нуждается в ремонте или замене. Если неисправность произойдёт в обеих трансформаторах, то может увеличиться потребляемый ток. Также может произойти перегрев обмоток трансформаторов. В этом случае сработают плавкие предохранители FU2,3 или тепловые предохранители FU1, FU4.

Стабилизацию напряжения и ограничение зарядного тока обеспечивает микросхема DA1 – LM317. Микросхемы данного типа имеют встроенную защиту от повышения выходного тока до значений свыше 2.5 А , защиту от короткого замыкания выхода, а также защиту от перегрева. Схема включения DA1 отличается от типовой только способом регулирования выходного напряжения. В данном случае выходное напряжение регулируется в диапазоне 11. 17 Вольт с помощью резистора R7. В случае потери контакта в этом резисторе ток на выходе БЗУ уменьшится до нуля, а не возрастёт до уровня срабатывания токовой защиты, как это случилось бы при обычном способе регулирования выходного напряжения (переменный резистор между 1-м выводом микросхемы и общим проводом).

При эксплуатации БЗУ может произойти отключение питающей сети. В этом случае ток разряда аккумулятора через БЗУ должен быть минимальным – существенно ниже тока саморазряда. Это обеспечивается с помощью ключа VT1 и диода VD5. При отключении сетевого питания как транзистор VT1, так и диод VD5 запираются. Ключ VT1 разрывает цепь для тока разряда через делитель R5 – R8, а диод VD5 отключает от аккумулятора электролитический конденсатор C2, имеющий значительную ёмкость и, возможно, заметный ток утечки. В результате ток разряда аккумулятора на отключенное от сети БЗУ составляет около 20 мкА. Этот ток определяется главным образом входным сопротивлением вольтметра, подключенного к выходу БЗУ.

Диод VD8 защищает БЗУ в случае ошибки с полярностью подключенного аккумулятора. В этом случае сгорит предохранитель FU5, после замены которого работоспособность устройства восстановится. Если такая ошибка исключена, то данный диод можно не устанавливать.

Вспомогательный источник питания с выходным напряжением около 8 В, собранный на элементах VD3 и С3, служит для питания цифрового измерителя тока и напряжения, подключенного к выходу ЗУ. Также он формирует сигнал, открывающий ключ VT1 при наличии напряжения в питающей сети. Если сетевое напряжение отключается, то конденсатор C3 быстро разряжается до нуля благодаря резистору R4.

В качестве цифрового измерителя тока и напряжения автор использовал широко распространённое устройство, продающееся в интернет-магазинах под названием "100V 10A Voltmeter Amperemeter LED Dual Digital Volt Amp Meter". Поскольку изготовители не всегда приводят схему подключения и цветовая маркировка выводов может отличается от той, которая приводится в описании, предлагается подключить измеритель к БЗУ в соответствии с нумерацией выводов, приведенной на следующей фотографии.

Читайте также:  Игровые мыши для mmorpg

При пользовании измерителем следует учитывать его особенность. Если измеряемый ток менее 50 мА, то на цифровом табло будет нулевой отсчёт "0.00 А". По мнению автора этот недостаток в значительной мере компенсируется доступностью устройства и его невысокой ценой – около 3-х USD. В продаже имеются также более точные измерители не имеющие указанного недостатка, но их стоимость заметно выше.

Внешний вид устройства со снятой крышкой приведен на следующей фотографии.

Все элементы находятся внутри металлического корпуса . Тепловые предохранители FU1 и FU4 приклеены термостойким клеем к трансформаторам Т1 и Т2 соответственно. Плавкие предохранители FU2 и FU3 размещены в сетевой вилке. Для повышения надёжности все плавкие предохранители установлены без арматуры – впаяны в разрывы соответствующих проводов с последующей изоляцией термоусадочной трубкой. Радиатором для микросхемы DA1 и диодного моста VD4 является алюминиевая пластина. Между микросхемой и пластинной следует проложить слюду или иной изолятор, обладающий низким тепловым сопротивлением. Алюминиевая пластина в свою очередь прикручена винтами к металлическому корпусу. Для дополнительного снижения теплового сопротивления использована паста КПТ-8. Резистор R7, с помощью которого регулируется выходное напряжение, должен быть защищён от случайных воздействий. Автор использовал в качестве R7 проволочный резистор типа ПП3-40.

Отладка устройства заключается в подборе резисторов R1 и R2, чтобы обеспечить одинаковую яркость светодиодов HL1 и HL2. Подбор этих резисторов может потребоваться если параметры трансформаторов Т1 и Т2 существенно отличаются. В этом случае напряжения между ними в режиме холостого хода могут распределяться неравномерно. С ростом нагрузки напряжения на трансформаторах выравниваются.

Обязательным условием безопасной эксплуатации БЗУ является надёжное заземление его корпуса.

Для подключения БЗУ к автомобильному аккумулятору удобно использовать разъём прикуривателя, если он не отключается при извлечении ключа зажигания. В противном случае потребуется установить специальный разъём для БЗУ. Конструкция разъёма должна исключать подключение с неправильной полярностью. В провод, соединяющий плюсовую клемму аккумулятора с разъёмом, следует установить плавкий предохранитель на ток 5 А.

Правильный выбор выходного напряжения, на которое настроено БЗУ, очень важен для успешной эксплуатации аккумулятора и зарядного устройства. Если напряжение ниже оптимального значения, то аккумулятор будет заряжен не полностью. Повышенное напряжение может вызвать постепенное выкипание электролита и привести к сокращению срока службы аккумулятора. Изготовители обычно не указывают оптимальное напряжение для буферного режима зарядки автомобильных аккумуляторных батарей. Можно сделать выбор на основе напряжения в автомобильной бортсети – от 13.8 В до 14.5 В. Для буферной зарядки лучше выбрать значение вблизи нижней границы этого диапазона. Также можно взять за основу параметры режима хранения (буферного режима) одного из автоматических зарядных устройств, выпускаемых промышленностью. Например в описании зарядных устройств семейства "Вымпел", фрагмент таблицы из которого приведен в приложении к данной статье, указано напряжение 13.4 – 13.8 В. В настоящее время автор использует БЗУ с необслуживаемой аккумуляторной батареей обычного типа (не AGM). При температуре 20°C напряжение выставлено на 13.7 В. Значения напряжений для других температур можно взять из таблицы, находящейся на передней панели устройства (см. 1-ю фотографию).

Буферное зарядное устройства (БЗУ) представляет собой стабилизированный источник напряжения, имеющий ограничитель выходного тока. Напряжение на выходе БЗУ соответствует напряжению на заряженном аккумуляторе. Если к такому устройству подключить требующую подзарядки аккумуляторную батарею, то зарядный ток будет определяться разностью напряжений на батарее и на выходе БЗУ, а также внутренним сопротивлением аккумулятора. В процессе зарядки зарядный ток уменьшается, пока не станет равным току саморазряда аккумулятора. В таком состоянии аккумулятор может находиться неограниченно долго – в течении всего срока эксплуатации. Если к БЗУ будет подключен сильно разряженный или неисправный (содержащий короткозамкнутые пластины) аккумулятор, то зарядный ток может существенно возрасти. Чтобы он не мог превысить безопасные значения в БЗУ имеется ограничитель выходного тока.

Буферный режим зарядки свинцовых аккумуляторных батарей широко используется в источниках бесперебойного питания. Опыт эксплуатации таких источников, а также рекомендации изготовителей аккумуляторов для них, говорят о том, что буферная зарядка весьма благотворно сказывается на сроке службы свинцовых аккумуляторов.

Буферная зарядка автомобильных аккумуляторов не получила широкого распространения по нескольким причинам. Полная зарядка от БЗУ сильно разряженного аккумулятора занимает больше времени, чем обычная зарядка. Существенные изменения зарядного тока, характерные для буферной зарядки, не соответствуют рекомендациям изготовителей аккумуляторов, которые обычно предлагают заряжать аккумулятор стабильным током, численно равным одной десятой ёмкости батареи. Главным препятствием на пути изготовления и использования БЗУ является то, что данное устройство должно работать постоянно, если автомобиль, на котором установлен заряжаемый аккумулятор, находится в гараже. Это требование накладывает на схемотехнику и конструкцию БЗУ повышенные требования по надёжности, а также электро и пожаробезопасности.

Вопросы, связанные с целесообразностью использования БЗУ с автомобильными аккумуляторами и зависимостью их срока службы от режима зарядки, выходят за рамки данной статьи. Отметим только, что режим БЗУ используется во многих фирменных зарядных устройствах для автомобильных аккумуляторов. Они автоматически переходят в режим БЗУ по окончании зарядки аккумулятора стабильным током и находятся в этом режиме пока аккумулятор не будет отключен. Также, по мнению автора, производители аккумуляторов не слишком заинтересованы в продлении сроков эксплуатации их продукции. В связи с этим рекомендуемый ими режим зарядки не следует воспринимать как единственно возможный.

У автора аккумуляторная батарея 6СТ-55 Подольского аккумуляторного завода прослужила 13 лет. Автомобиль, на котором она была установлена, эксплуатировался круглый год и хранился в неотапливаемом гараже. В течении всего срока эксплуатации батарея была подключена к БЗУ, которое отключалось только на время поездок.

Внешний вид БЗУ представлен на фотографии.

На верхней панели устройства имеется кнопка выключателя сетевого питания. Справа от кнопки под завинчивающейся крышкой находится ось переменного резистора, позволяющего регулировать выходное напряжение БЗУ. Далее, справа от переменного резистора, расположен выходной разъём. На передней панели имеется закрытое оргстеклом окно, за которым находится табло измерителя выходного тока и напряжения, а также два зелёных светодиода, сигнализирующих об исправности БЗУ. Справа от окна имеется таблица, содержащая ряд значений выходного напряжения БЗУ, которые следует устанавливать в зависимости от температуры в гараже. Свойства свинцовых аккумуляторов таковы, что при повышенных температурах напряжение на выходе БЗУ следует уменьшать, а при пониженных – увеличивать. Температурный коэффициент для свинцового аккумулятора с номинальным напряжением 12 Вольт по разным источникам составляет от – 30 до -15 мВ/°С. Таблица составлена исходя из значения -20 мВ/°С.

На следующем рисунке представлена схема электрическая принципиальная БЗУ.

Автор неоднократно убеждался в том, что надёжность работы моточных изделий – электромоторов, трансформаторов, реле и т.п., эксплуатируемых в неотапливаемых помещениях, существенно снижается. Как правило причиной отказов является образование короткозамкнутых витков. Видимо это связано с повышенной влажностью и большими перепадами температуры, способствующими разрушению лаковой изоляции обмоточного провода. В данном устройстве для повышения надёжности используются два силовых трансформатора, обмотки которых включены последовательно. При таком соединении межвитковое замыкание в любом из трансформаторов не вызывает аварийной ситуации – существенного повышения токов в обмотках, перегрева и т.п. Более того – БЗУ в этом случае не теряет работоспособность – продолжает поддерживать аккумулятор в заряженном состоянии. Светодиоды HL1 и HL2 сигнализируют об исправности трансформаторов. Если один из них перестаёт светиться, то соответствующий трансформатор нуждается в ремонте или замене. Если неисправность произойдёт в обеих трансформаторах, то может увеличиться потребляемый ток. Также может произойти перегрев обмоток трансформаторов. В этом случае сработают плавкие предохранители FU2,3 или тепловые предохранители FU1, FU4.

Читайте также:  Введите название беседы перейти к диалогу

Стабилизацию напряжения и ограничение зарядного тока обеспечивает микросхема DA1 – LM317. Микросхемы данного типа имеют встроенную защиту от повышения выходного тока до значений свыше 2.5 А , защиту от короткого замыкания выхода, а также защиту от перегрева. Схема включения DA1 отличается от типовой только способом регулирования выходного напряжения. В данном случае выходное напряжение регулируется в диапазоне 11. 17 Вольт с помощью резистора R7. В случае потери контакта в этом резисторе ток на выходе БЗУ уменьшится до нуля, а не возрастёт до уровня срабатывания токовой защиты, как это случилось бы при обычном способе регулирования выходного напряжения (переменный резистор между 1-м выводом микросхемы и общим проводом).

При эксплуатации БЗУ может произойти отключение питающей сети. В этом случае ток разряда аккумулятора через БЗУ должен быть минимальным – существенно ниже тока саморазряда. Это обеспечивается с помощью ключа VT1 и диода VD5. При отключении сетевого питания как транзистор VT1, так и диод VD5 запираются. Ключ VT1 разрывает цепь для тока разряда через делитель R5 – R8, а диод VD5 отключает от аккумулятора электролитический конденсатор C2, имеющий значительную ёмкость и, возможно, заметный ток утечки. В результате ток разряда аккумулятора на отключенное от сети БЗУ составляет около 20 мкА. Этот ток определяется главным образом входным сопротивлением вольтметра, подключенного к выходу БЗУ.

Диод VD8 защищает БЗУ в случае ошибки с полярностью подключенного аккумулятора. В этом случае сгорит предохранитель FU5, после замены которого работоспособность устройства восстановится. Если такая ошибка исключена, то данный диод можно не устанавливать.

Вспомогательный источник питания с выходным напряжением около 8 В, собранный на элементах VD3 и С3, служит для питания цифрового измерителя тока и напряжения, подключенного к выходу ЗУ. Также он формирует сигнал, открывающий ключ VT1 при наличии напряжения в питающей сети. Если сетевое напряжение отключается, то конденсатор C3 быстро разряжается до нуля благодаря резистору R4.

В качестве цифрового измерителя тока и напряжения автор использовал широко распространённое устройство, продающееся в интернет-магазинах под названием "100V 10A Voltmeter Amperemeter LED Dual Digital Volt Amp Meter". Поскольку изготовители не всегда приводят схему подключения и цветовая маркировка выводов может отличается от той, которая приводится в описании, предлагается подключить измеритель к БЗУ в соответствии с нумерацией выводов, приведенной на следующей фотографии.

При пользовании измерителем следует учитывать его особенность. Если измеряемый ток менее 50 мА, то на цифровом табло будет нулевой отсчёт "0.00 А". По мнению автора этот недостаток в значительной мере компенсируется доступностью устройства и его невысокой ценой – около 3-х USD. В продаже имеются также более точные измерители не имеющие указанного недостатка, но их стоимость заметно выше.

Внешний вид устройства со снятой крышкой приведен на следующей фотографии.

Все элементы находятся внутри металлического корпуса . Тепловые предохранители FU1 и FU4 приклеены термостойким клеем к трансформаторам Т1 и Т2 соответственно. Плавкие предохранители FU2 и FU3 размещены в сетевой вилке. Для повышения надёжности все плавкие предохранители установлены без арматуры – впаяны в разрывы соответствующих проводов с последующей изоляцией термоусадочной трубкой. Радиатором для микросхемы DA1 и диодного моста VD4 является алюминиевая пластина. Между микросхемой и пластинной следует проложить слюду или иной изолятор, обладающий низким тепловым сопротивлением. Алюминиевая пластина в свою очередь прикручена винтами к металлическому корпусу. Для дополнительного снижения теплового сопротивления использована паста КПТ-8. Резистор R7, с помощью которого регулируется выходное напряжение, должен быть защищён от случайных воздействий. Автор использовал в качестве R7 проволочный резистор типа ПП3-40.

Отладка устройства заключается в подборе резисторов R1 и R2, чтобы обеспечить одинаковую яркость светодиодов HL1 и HL2. Подбор этих резисторов может потребоваться если параметры трансформаторов Т1 и Т2 существенно отличаются. В этом случае напряжения между ними в режиме холостого хода могут распределяться неравномерно. С ростом нагрузки напряжения на трансформаторах выравниваются.

Обязательным условием безопасной эксплуатации БЗУ является надёжное заземление его корпуса.

Для подключения БЗУ к автомобильному аккумулятору удобно использовать разъём прикуривателя, если он не отключается при извлечении ключа зажигания. В противном случае потребуется установить специальный разъём для БЗУ. Конструкция разъёма должна исключать подключение с неправильной полярностью. В провод, соединяющий плюсовую клемму аккумулятора с разъёмом, следует установить плавкий предохранитель на ток 5 А.

Правильный выбор выходного напряжения, на которое настроено БЗУ, очень важен для успешной эксплуатации аккумулятора и зарядного устройства. Если напряжение ниже оптимального значения, то аккумулятор будет заряжен не полностью. Повышенное напряжение может вызвать постепенное выкипание электролита и привести к сокращению срока службы аккумулятора. Изготовители обычно не указывают оптимальное напряжение для буферного режима зарядки автомобильных аккумуляторных батарей. Можно сделать выбор на основе напряжения в автомобильной бортсети – от 13.8 В до 14.5 В. Для буферной зарядки лучше выбрать значение вблизи нижней границы этого диапазона. Также можно взять за основу параметры режима хранения (буферного режима) одного из автоматических зарядных устройств, выпускаемых промышленностью. Например в описании зарядных устройств семейства "Вымпел", фрагмент таблицы из которого приведен в приложении к данной статье, указано напряжение 13.4 – 13.8 В. В настоящее время автор использует БЗУ с необслуживаемой аккумуляторной батареей обычного типа (не AGM). При температуре 20°C напряжение выставлено на 13.7 В. Значения напряжений для других температур можно взять из таблицы, находящейся на передней панели устройства (см. 1-ю фотографию).

Правильная зарядка аккумулятора

Одним из наиболее важных условий корректной работы, хорошей отдачи и длительного срока службы аккумуляторной батареи является её правильный заряд. Это касается абсолютно всех аккумуляторов: будь то мощные промышленные большой емкости, либо же крошечные батарейки в Ваших мобильных. К сожалению, далеко не все пользователи знают, что есть правильная зарядка аккумулятора. Данная статья призвана помочь людям в этом вопросе и быть "руководством пользователя" при столкновении с задачей должным образом зарядить АКБ (аккумуляторную батарею).

Существует множество различных видов электрических аккумуляторов – для каждого из них характерны свои правила и особенности заряда. Все они подробно описаны в инструкциях по эксплуатации, обязательным образом поставляемых продавцом (по крайней мере мы так делаем всегда) вместе с аккумуляторной продукцией. Однако, бороздить инструкцию в поиске нужной информации не всегда удобно, да и не всегда, согласитесь, есть к тому желание. Посему, в данной статье мы обрисуем общие правила по правильной зарядке наиболее популярных и часто используемых в бытовых условиях аккумуляторов – свинцово-кислотных необслуживаемых герметичных АКБ (чаще всего это аккумуляторы для ИБП, аккумуляторы для электромобилей, электромоторов, для лодок, эхолотов, для сигнализации и связи и проч.) – AGM и гелевых аккумуляторов. Эти правила кое в чем справедливы и для автомобильных стартерных (обслуживаемых) АКБ, хоть процесс заряда таких аккумуляторов и имеет некоторые особенности.

Читайте также:  Бесплатные приложения для снятия видео

Как заряжать аккумулятор?

Итак, давайте разберемся, что представляет из себя правильный заряд аккумуляторной батареи. Для начала хотим обратить внимание на одно общее правило, касающееся ВСЕХ БЕЗ ИСКЛЮЧЕНИЯ видов аккумуляторов, известных науке: чем меньше раз разряжается аккумулятор и чем менее глубоким является каждый отдельно взятый его разряд, тем большим будет срок его службы. Все мифы о том, что аккумулятор (какой бы он ни был!), нужно каждый раз полностью разряжать, а затем полностью заряжать, и только так он прослужит максимально долго, а также утверждения "знатоков", что, мол, надо обязательно периодически разряжать аккумулятор, иначе он испортится – полная чушь ! Если Вам предлагают купить аккумулятор и при этом рассказывают подобные "истории" – держитесь от таких продавцов и их продукции подальше. Для низкокачественных батарей, производимых из "грязного" вторсырья, отсутствие периодической "встряски" в виде разряда-заряда может действительно быть причиной быстрого выхода из строя (из-за того, что пластины данных АКБ чрезмерно загрязнены, и без "встрясок" данная "грязь" быстро обволакивает поверхность пластин и мешает нормальному прохождению процесса электролиза). Но для качественных аккумуляторов наиболее излюбленным является именно режим постоянного (буферного) подзаряда, при котором практически отсутствуют разряды, а сама АКБ постоянно пребывает под правильным напряжением.

Здесь надо учитывать также эффект памяти некоторых аккумуляторных батарей — в настоящий момент под эффектом памяти понимается обратимая потеря ёмкости, имеющая место в некоторых типах электрических аккумуляторов при нарушении рекомендованного режима зарядки, в частности, при подзарядке не полностью разрядившегося аккумулятора. Название связано с внешним проявлением эффекта: аккумулятор как будто «помнит», что в предыдущие циклы работы его ёмкость не была использована полностью, и при разряде отдаёт ток только до «запомненной границы». Никель-металл-гидридный (Ni-MH), Никель-кадмиевый (NiCd), Серебряно-цинковый аккумулятор.

Переходим ближе к делу. Чтобы правильно заряжать аккумулятор нужно понимать, в каком режиме он у Вас эксплуатируется.

Что такое буферный режим работы

Самый яркий пример буферного режима работы аккумулятора – ИБП (источник бесперебойного питания, он же UPS). В ИБП аккумуляторная батарея находится на постоянной подзарядке и отдает энергию лишь тогда, когда пропадает электричество в сети, а как только оно появляется, аккумулятор тут же подзаряжается. Это самый щадящий режим работы и именно в буферном режиме, как мы уже говорили, аккумуляторы служат дольше всего (например, наши батареи EverExceed серии ST, производимые по технологии AGM нового поколения, имеют срок службы в буферном режиме при Т=20 о С – 12 лет).

Что такое циклический режим работы

Пример циклического режима использования АКБ – поломоечная машина, детский электромобиль в парке аттракционов, либо же система автономного электропитания с использованием альтернативных источников энергии (солнечных батарей, ветряков и т.д.). Аккумуляторы в этих приложениях разряжают-заряжают как минимум 1 раз в сутки. Такой режим является наиболее суровым, и срок службы АКБ тут уже исчисляется не годами, а количеством циклов разряд-заряда (ну и их глубины, естественно). Упомянутые ранее аккумуляторы EverExceed серии ST могут обеспечить до 600 циклов глубокого 100% разряда (обычные же AGM-аккумуляторы – не более 280). Всегда очень удивляет, когда в приложениях с явно циклическим характером работы (те же системы электропитания на солнечных батареях, либо мобильные кофемашины) некоторые "умельцы" предлагают использование стартерных автомобильных аккумуляторов (аргумент – их дешевизна!). Уведомляем всех, кто столкнулся с подобным предложением : стартерные АКБ имеют тонкие пластины, они рассчитаны лишь на запуск двигателя и дальнейшую подзарядку от генератора, в циклическом же режиме с глубокими разрядами они не прослужат и пары месяцев – их пластины "посыпятся" и на этом эксперемент с "дешевым аналогом" будет завершен.

Как правильно заряжать аккумулятор в буферном режиме:

Всем известно, что номинальное напряжение одного элемента в свинцово-кислотных АКБ = 2 Вольта (отметим, что на практике оно обычно никогда не равняется строго 2 В, но для простоты применяется именно такое число). В быту наиболее часто используются аккумуляторные батареи напряжением 6 Вольт (3 элемента) и 12 Вольт (6 элементов).

В буферном режиме напряжение заряда следует выставить на уровне 2,27 – 2,30 Вольт на элемент (то есть для 12-вольтового аккумулятора это 13,6 – 13,8 В, а для 6-вольтового – 6,8 – 6,9 В). Это подходит как для AGM, так и для гелевых батарей.

Ток заряда должен быть ограничен в величину, равную 30% от номинальной 10-часовой емкости аккумулятора, выраженную в Амперах (для гелевых аккумуляторов – 20%). Например, для батареи с емкостью С­10=100 Ач ограничение тока заряда должно составлять 30 А (для гелевых АКБ – 20 А).

Как правильно заряжать аккумулятор в циклическом режиме:

Напряжение заряда:

2,4 – 2,45 В/эл. (14,4 – 14,7 В на 12-вольтовую батарею или 7,2 – 7,35 В на 6-вольтовую) – для AGM-аккумуляторов;

2,35 В/эл (14,1 В на 12-вольтовую батарею или 7,05 В на 6-вольтовую) – для гелевых аккумуляторов.

Ток заряда:

20% от С10 (для батареи емкостью 100 Ач – это 20 А).

Сколько должен длиться заряд батареи

Продолжительность заряда зависит от изначальной заряженности (разряженности) батареи. Поначалу идет быстрый заряд (бустерный), но по мере насыщения потребляемый ток снижается, доходя до минимума при достижении полной заряженности АКБ. Критерий полной заряженности – падение тока, который принимает аккумулятор, до 2 – 3 мА на каждый Ач емкости батареи (при буферном заряде). Например, для той же С­10=100 Ач батареи падение тока зарядки до 200 – 300 мА будет означать, что батарея почти полностью заряжена. Чтобы довести уровень заряда АКБ до 100%, следует продолжать зарядку таким милли-током еще около 1 часа. Обычно, полностью разряженная батарея заряжается за 10 часов в циклическом режиме или за 30-48 часов в буферном.

Следует учесть, что для полной зарядки аккумуляторной батареи ей следует сообщить примерно на 20% энергии больше, чем следует из понятия “номинальная емкость”. Это, как говорится, законы природы, и они едины для всех свинцово-кислотных да и других батарей, независимо от вида и производителя. Образно говоря, если батарею не "перенасытить", в ней не завершатся должные электрохимические процессы и дальнейшая отдача будет меньше.

Производить зарядку аккумуляторных батарей желательно при температуре окружающей среды 20 – 25 о С.

При меньшей температуре заряжать необходимо более длительное время. Зарядка аккумулятора при температуре менее 0 о С становится крайне нежелательной (ибо почти безрезультатна). Желательно также наличие функции термокомпенсации (изменения напряжения заряда в зависимости от температуры окружающей среды) на Вашем зарядном устройстве.

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *