0

Для передачи данных используется коаксиальный кабель

Физическая среда обеспечивает перенос информации между абонентами вычислительной сети. Физическая передающая среда ЛВС представлена тремя типами кабелей: витая пара проводов, коаксиальный кабель, оптоволоконный кабель.

В качестве средств коммуникации наиболее часто используются витая пара, коаксиальный кабель и оптоволоконные линии. При выборе типа кабеля учитывают следующие показатели:

Стоимость монтажа и обслуживания;

Скорость передачи информации;

Ограничения на величину расстояния передачи информации (без дополнительных усилителей–повторителей (репитеров));

Безопасность передачи данных.

Главная проблема заключается в одновременном обеспечении этих показателей, например, наивысшая скорость передачи данных ограничена максимально возможным расстоянием передачи данных, при котором еще обеспечивается требуемый уровень защиты данных. Легкая наращиваемость и простота расширения кабельной системы влияют на ее стоимость и безопасность передачи данных.

состоит из двух изолированных проводов, свитых между собой. Скручивание проводов уменьшает влияние внешних электромагнитных полей на передаваемые сигналы. Самый простой вариант витой пары – телефонный кабель. Дешевизна этого вида передающей среды делает ее достаточной популярной для ЛВС. Основной недостаток витой пары – плохая помехозащищенность и низкая скорость передачи информации – 0,25 – 1 Мбит/с. Технологические усовершенствования позволяют повысить скорость передачи и помехозащищенность (экранированная витая пара), но при этом возрастает стоимость этого типа передающей среды.

Наиболее дешевым кабельным соединением является витое двухжильное проводное соединение часто называемое «витой парой» (англ. Twisted pair). Реальный кабель состоит, как правило, из нескольких витых пар. Она позволяет передавать информацию со скоростью до 10 Мбит/с, легко наращивается, однако является помехонезащищенной. Длина кабеля не может превышать 1000 м при скорости передачи 1 Мбит/с. Преимуществами являются низкая цена и беспроблемная установка. Для повышения помехозащищенности информации часто используют экранированную витую пару, т.е. витую пару, помещенную в экранирующую оболочку, подобно экрану коаксиального кабеля. Это увеличивает стоимость витой пары и приближает ее цену к цене коаксиального кабеля.

по сравнению с витой парой обладает более высокой механической прочностью, помехозащищенностью и обеспечивает скорость передачи информации до 10 – 50 Мбит/с. Для промышленного использования выпускаются два типа коаксиальных кабелей: толстых и тонких. Толстый кабель более прочен и передает сигналы нужной амплитуды на большее расстояние, чем тонкий. В то же время тонкий кабель значительно дешевле. Коаксиальный кабель так же, как и витая пара, является одним из популярных типов передающей среды.

Коаксиальный кабель состоит из центрального проводника (одножильного или многожильного) и внешней экранирующей оплетки. Между ними имеется находится изолирующий материал. Внешняя изоляция защищает от воздействия окружающей среды.Коаксиальный кабель имеет среднюю цену, хорошо помехозащищен и применяется для связи на большие расстояния (несколько километров). Скорость передачи информации от 1 до 10 Мбит/с, а в некоторых случаях может достигать 50 Мбит/с. Коаксиальный кабель используется для основной и широкополосной передачи информации, т.к. в первую очередь его используют в сетях Ethernet, то коротко его называют Ethernet-кабель.

Широкополосный коаксиальный кабель.

Широкополосный коаксиальный кабель невосприимчив к помехам, легко наращивается, но цена его высокая. Скорость передачи информации равна 500 Мбит/с. При передачи информации в базисной полосе частот на расстояние более 1,5 км требуется усилитель, или так называемый репитер (англ. repeater – повторитель). Поэтому суммарное расстояние при передаче информации увеличивается до 10 км. Для вычислительных сетей с топологией типа «шина» или «дерево» коаксиальный кабель должен иметь на конце согласующий резистор (терминатор).

Тонкий ЕtheNnet-кабель. Ethernet-кабель также является коаксиальным кабелем с волновым сопротивлением 50 Ом. Общая длина сегмента тонкого кабеля не должна превышать 185 м. Максимальная длина кабелей всей свети при использовании дополнительного оборудования может достигать 925 м.

Толстый ЕtheNnet-кабель. По своим показателям, связанным с защитой от электромагнитного излучения, толстый кабель значительно превосходит тонкий. По традиционному цвету внешней изоляции его еще называют желтый кабель (англ. yellow cable). Он использует 15–контактное стандартное включение. Вследствие помехозащищенности является дорогой альтернативой обычным коаксиальным кабелям. Средняя скорость передачи данных 10 Мбит/с. Максимально доступное расстояние без повторителя не превышает 500 м., а общее расстояние сети Ethernet – около 2500 м. Ethernet-кабель, благодаря своей магистральной топологии, использует в конце лишь один нагрузочный резистор.

Более дешевым, чем Ethernet–кабель является соединение Cheapernet-кабель (RG–58) или, как его часто называют, тонкий (англ. thin) Ethernet. Это также 50-омный коаксиальный кабель со скоростью передачи информации в 10 Мбит/с. При соединении сегментов Cheapernet–кабеля также требуются повторители. Вычислительные сети с Cheapernet–кабелем имеют небольшую стоимость и минимальные затраты при наращивании. Соединения сетевых плат производится с помощью широко используемых малогабаритных байонетных разъемов (СР–50). Дополнительное экранирование не требуется. Кабель присоединяется к ПК с помощью тройниковых соединителей (T–connectors). Расстояние между двумя рабочими станциями без повторителей может составлять максимум 300 м, а минимум – 0,5 м, общее расстояние для сети на Cheapernet–кабеля – около 1000 м. Приемопередатчик Cheapernet расположен на сетевой плате как для гальванической развязки между адаптерами, так и для усиления внешнего сигнала

идеальная передающая среда. Он не подвержен действию электромагнитных полей и сам практически не имеет излучения. Последнее свойство позволяет использовать его в сетях, требующих повышенной секретности информации. Скорость передачи информации по оптоволоконному кабелю более 50 Мбит/с. По сравнению с предыдущими типами передающей среды он более дорог, менее технологичен в эксплуатации.

Наиболее дорогими являются оптопроводники, называемые также стекловолоконным кабелем. Он состоит из двух проводов, причем каждый из них может передавать данные только в одном направлении. Информационный сигнал, передаваемый по такому проводу, не подвержен влиянию электрических полей. В каждой оболочке находятся усиливающие волокна в виде слоев пластика. Скорость распространения информации достигает несколько гигабит в секунду, причем длина кабеля практически не играет никакой роли. Допустимое удаление более 50 км. На данный момент это наиболее дорогостоящее соединение для ЛВС. Применяются там, где возникают электромагнитные поля помех или требуется передача информации на очень большие расстояния без использования повторителей. Они обладают противоподслушивающими свойствами, так как техника ответвлений в оптоволоконных кабелях очень сложна. Оптопроводники объединяются в JIBC с помощью звездообразного соединения.

Показатели трех наиболее типичных средств коммуникаций для передачи данных приведены в таблице № 2. Таблица 2 Основные показатели средств коммуникации. Показатели Средства коммуникаций для передачи данных Двух жильная кабель витая пара Коаксиальный кабель Оптоволоконный кабель Цена Невысокая Относительно высокая Высокая Наращивание Очень простое Проблематично Простое Защита от прослушивания Незначительная Хорошая Высокая Проблемы с заземлением Нет Возможны Нет Восприимчивость к помехам Существует Существует Отсутствует

Физическая среда обеспечивает перенос информации между абонентами вычислительной сети. Физическая передающая среда ЛВС представлена тремя типами кабелей: витая пара проводов, коаксиальный кабель, оптоволоконный кабель.

Читайте также:  Детские игры для 10 12 лет

В качестве средств коммуникации наиболее часто используются витая пара, коаксиальный кабель и оптоволоконные линии. При выборе типа кабеля учитывают следующие показатели:

Стоимость монтажа и обслуживания;

Скорость передачи информации;

Ограничения на величину расстояния передачи информации (без дополнительных усилителей–повторителей (репитеров));

Безопасность передачи данных.

Главная проблема заключается в одновременном обеспечении этих показателей, например, наивысшая скорость передачи данных ограничена максимально возможным расстоянием передачи данных, при котором еще обеспечивается требуемый уровень защиты данных. Легкая наращиваемость и простота расширения кабельной системы влияют на ее стоимость и безопасность передачи данных.

состоит из двух изолированных проводов, свитых между собой. Скручивание проводов уменьшает влияние внешних электромагнитных полей на передаваемые сигналы. Самый простой вариант витой пары – телефонный кабель. Дешевизна этого вида передающей среды делает ее достаточной популярной для ЛВС. Основной недостаток витой пары – плохая помехозащищенность и низкая скорость передачи информации – 0,25 – 1 Мбит/с. Технологические усовершенствования позволяют повысить скорость передачи и помехозащищенность (экранированная витая пара), но при этом возрастает стоимость этого типа передающей среды.

Наиболее дешевым кабельным соединением является витое двухжильное проводное соединение часто называемое «витой парой» (англ. Twisted pair). Реальный кабель состоит, как правило, из нескольких витых пар. Она позволяет передавать информацию со скоростью до 10 Мбит/с, легко наращивается, однако является помехонезащищенной. Длина кабеля не может превышать 1000 м при скорости передачи 1 Мбит/с. Преимуществами являются низкая цена и беспроблемная установка. Для повышения помехозащищенности информации часто используют экранированную витую пару, т.е. витую пару, помещенную в экранирующую оболочку, подобно экрану коаксиального кабеля. Это увеличивает стоимость витой пары и приближает ее цену к цене коаксиального кабеля.

по сравнению с витой парой обладает более высокой механической прочностью, помехозащищенностью и обеспечивает скорость передачи информации до 10 – 50 Мбит/с. Для промышленного использования выпускаются два типа коаксиальных кабелей: толстых и тонких. Толстый кабель более прочен и передает сигналы нужной амплитуды на большее расстояние, чем тонкий. В то же время тонкий кабель значительно дешевле. Коаксиальный кабель так же, как и витая пара, является одним из популярных типов передающей среды.

Коаксиальный кабель состоит из центрального проводника (одножильного или многожильного) и внешней экранирующей оплетки. Между ними имеется находится изолирующий материал. Внешняя изоляция защищает от воздействия окружающей среды.Коаксиальный кабель имеет среднюю цену, хорошо помехозащищен и применяется для связи на большие расстояния (несколько километров). Скорость передачи информации от 1 до 10 Мбит/с, а в некоторых случаях может достигать 50 Мбит/с. Коаксиальный кабель используется для основной и широкополосной передачи информации, т.к. в первую очередь его используют в сетях Ethernet, то коротко его называют Ethernet-кабель.

Широкополосный коаксиальный кабель.

Широкополосный коаксиальный кабель невосприимчив к помехам, легко наращивается, но цена его высокая. Скорость передачи информации равна 500 Мбит/с. При передачи информации в базисной полосе частот на расстояние более 1,5 км требуется усилитель, или так называемый репитер (англ. repeater – повторитель). Поэтому суммарное расстояние при передаче информации увеличивается до 10 км. Для вычислительных сетей с топологией типа «шина» или «дерево» коаксиальный кабель должен иметь на конце согласующий резистор (терминатор).

Тонкий ЕtheNnet-кабель. Ethernet-кабель также является коаксиальным кабелем с волновым сопротивлением 50 Ом. Общая длина сегмента тонкого кабеля не должна превышать 185 м. Максимальная длина кабелей всей свети при использовании дополнительного оборудования может достигать 925 м.

Толстый ЕtheNnet-кабель. По своим показателям, связанным с защитой от электромагнитного излучения, толстый кабель значительно превосходит тонкий. По традиционному цвету внешней изоляции его еще называют желтый кабель (англ. yellow cable). Он использует 15–контактное стандартное включение. Вследствие помехозащищенности является дорогой альтернативой обычным коаксиальным кабелям. Средняя скорость передачи данных 10 Мбит/с. Максимально доступное расстояние без повторителя не превышает 500 м., а общее расстояние сети Ethernet – около 2500 м. Ethernet-кабель, благодаря своей магистральной топологии, использует в конце лишь один нагрузочный резистор.

Более дешевым, чем Ethernet–кабель является соединение Cheapernet-кабель (RG–58) или, как его часто называют, тонкий (англ. thin) Ethernet. Это также 50-омный коаксиальный кабель со скоростью передачи информации в 10 Мбит/с. При соединении сегментов Cheapernet–кабеля также требуются повторители. Вычислительные сети с Cheapernet–кабелем имеют небольшую стоимость и минимальные затраты при наращивании. Соединения сетевых плат производится с помощью широко используемых малогабаритных байонетных разъемов (СР–50). Дополнительное экранирование не требуется. Кабель присоединяется к ПК с помощью тройниковых соединителей (T–connectors). Расстояние между двумя рабочими станциями без повторителей может составлять максимум 300 м, а минимум – 0,5 м, общее расстояние для сети на Cheapernet–кабеля – около 1000 м. Приемопередатчик Cheapernet расположен на сетевой плате как для гальванической развязки между адаптерами, так и для усиления внешнего сигнала

идеальная передающая среда. Он не подвержен действию электромагнитных полей и сам практически не имеет излучения. Последнее свойство позволяет использовать его в сетях, требующих повышенной секретности информации. Скорость передачи информации по оптоволоконному кабелю более 50 Мбит/с. По сравнению с предыдущими типами передающей среды он более дорог, менее технологичен в эксплуатации.

Наиболее дорогими являются оптопроводники, называемые также стекловолоконным кабелем. Он состоит из двух проводов, причем каждый из них может передавать данные только в одном направлении. Информационный сигнал, передаваемый по такому проводу, не подвержен влиянию электрических полей. В каждой оболочке находятся усиливающие волокна в виде слоев пластика. Скорость распространения информации достигает несколько гигабит в секунду, причем длина кабеля практически не играет никакой роли. Допустимое удаление более 50 км. На данный момент это наиболее дорогостоящее соединение для ЛВС. Применяются там, где возникают электромагнитные поля помех или требуется передача информации на очень большие расстояния без использования повторителей. Они обладают противоподслушивающими свойствами, так как техника ответвлений в оптоволоконных кабелях очень сложна. Оптопроводники объединяются в JIBC с помощью звездообразного соединения.

Показатели трех наиболее типичных средств коммуникаций для передачи данных приведены в таблице № 2. Таблица 2 Основные показатели средств коммуникации. Показатели Средства коммуникаций для передачи данных Двух жильная кабель витая пара Коаксиальный кабель Оптоволоконный кабель Цена Невысокая Относительно высокая Высокая Наращивание Очень простое Проблематично Простое Защита от прослушивания Незначительная Хорошая Высокая Проблемы с заземлением Нет Возможны Нет Восприимчивость к помехам Существует Существует Отсутствует

Коаксиа́льный ка́бель (от лат. co — совместно и axis — ось, то есть соосный; разговорное коаксиал от англ. coaxial ) — электрический кабель, состоящий из центрального проводника и экрана, расположенных соосно и разделённых изоляционным материалом или воздушным промежутком. Используется для передачи радиочастотных электрических сигналов. Отличается от экранированного провода, применяемого для передачи постоянного электрического тока и низкочастотных сигналов, более однородным в направлении продольной оси сечением (форма поперечного сечения, размеры и значения электромагнитных параметров материалов нормированы) и применением более качественных материалов для электропроводников и изоляции. Изобретён и запатентован в 1880 году британским физиком Оливером Хевисайдом.

Содержание

Устройство [ править | править код ]

Коаксиальный кабель (см. рисунок) состоит из:

  • 4 (A) — оболочки (служит для изоляции и защиты от внешних воздействий) из светостабилизированного (то есть устойчивого к ультрафиолетовому излучению солнца) полиэтилена, поливинилхлорида, повива фторопластовой ленты или иного изоляционного материала;
  • 3 (B) — внешнего проводника (экрана) в виде оплетки, фольги, покрытой слоем алюминия плёнки и их комбинаций, а также гофрированной трубки, повива металлических лент и др. из меди, медного или алюминиевого сплава;
  • 2 (C) — изоляции, выполненной в виде сплошного (полиэтилен, вспененный полиэтилен, сплошной фторопласт, фторопластовая лента и т. п.) или полувоздушного (кордельно-трубчатый повив, шайбы и др.) диэлектрического заполнения, обеспечивающей постоянство взаимного расположения (соосность) внутреннего и внешнего проводников;
  • 1 (D) — внутреннего проводника в виде одиночного прямолинейного (как на рисунке) или свитого в спираль провода, многожильного провода, трубки, выполняемых из меди, медного сплава, алюминиевого сплава, омеднённой стали, омеднённого алюминия, посеребрённой меди и т. п.
Читайте также:  Интересные проекты на python

Благодаря совпадению осей обоих проводников у идеального коаксиального кабеля оба компонента электромагнитного поля полностью сосредоточены в пространстве между проводниками (в диэлектрической изоляции) и не выходят за пределы кабеля, что исключает потери электромагнитной энергии на излучение и защищает кабель от внешних электромагнитных наводок. В реальных кабелях ограниченные выход излучения наружу и чувствительность к наводкам обусловлены отклонениями геометрии от идеальности. Весь полезный сигнал передаётся по внутреннему проводнику.

История создания [ править | править код ]

  • 1855 год — Уильям Томсон рассматривает коаксиальный кабель и получает формулу для погонной ёмкости. [1]
  • 1880 год — Оливер Хевисайд получает британский патент № 1407 на коаксиальный кабель. [2]
  • 1884 год — фирма Siemens & Halske патентует коаксиальный кабель в Германии (патент № 28978, 27 марта 1884). [3]
  • 1894 год ― Никола Тесла запатентовал электрический проводник для переменных токов (патент № 514167).
  • 1929 год — Ллойд Эспеншид (англ. Lloyd Espenschied ) и Герман Эффель из AT&T Bell Telephone Laboratories запатентовали первый современный коаксиальный кабель.
  • 1936 год — AT&T построила экспериментальную телевизионную линию передачи на коаксиальном кабеле, между Филадельфией и Нью-Йорком.
  • 1936 год — первая телепередача по коаксиальному кабелю с Берлинских Олимпийских Игр в Лейпциге.
  • 1936 год — между Лондоном и Бирмингемом почтовой службой (теперь компания BT) проложен кабель на 40 телефонных номеров.
  • 1941 год — первое коммерческое использование системы L1 в США компанией AT&T. Между Миннеаполисом (Миннесота) и Стивенс Пойнт (Висконсин) запущен ТВ-канал и 480 телефонных номеров.
  • 1956 год — проложена первая трансатлантическая коаксиальная линия, TAT-1.

Применение [ править | править код ]

Основное назначение коаксиального кабеля — передача высокочастотного сигнала в различных областях техники:

  • системы связи;
  • вещательные сети;
  • компьютерные сети;
  • антенно-фидерные системы;
  • АСУ и другие производственные и научно-исследовательские технические системы;
  • системы дистанционного управления, измерения и контроля;
  • системы сигнализации и автоматики;
  • системы объективного контроля и видеонаблюдения;
  • каналы связи различных радиоэлектронных устройств мобильных объектов (судов, летательных аппаратов и др.);
  • внутриблочные и межблочные связи в составе радиоэлектронной аппаратуры;
  • каналы связи в бытовой и любительской технике;
  • военная техника и другие области специального применения.

Кроме передачи сигнала, отрезки кабеля могут использоваться и для других целей:

Существуют коаксиальные кабели для передачи низкочастотных сигналов (в этом случае оплётка служит в качестве экрана) и для постоянного тока высокого напряжения. Для таких кабелей волновое сопротивление не нормируется.

Классификация [ править | править код ]

По назначению — для систем кабельного телевидения, для систем связи, авиационной, космической техники, компьютерных сетей, бытовой техники и т. д.

По волновому сопротивлению (хотя волновое сопротивление кабеля может быть любым), стандартными являются пять значений по российским стандартам и три по международным:

  • 50 Ом — наиболее распространённый тип, применяется в разных областях радиоэлектроники. Причиной выбора данного номинала была, прежде всего, возможность передачи радиосигналов c минимальными потерями в кабеле со сплошным полиэтиленовым диэлектриком [4] , а также близкие к предельно достижимым показания электрической прочности и передаваемой мощности; [5]
  • 75 Ом — распространённый тип:
  • в СССР и России применяется преимущественно со сплошным диэлектриком в телевизионной и видеотехнике. Его массовое применение было обусловлено приемлемым соотношением стоимости и механической прочности при протягивании, так как метраж этого кабеля значителен. При этом потери не имеют решающего значения, так как сигналы большой мощности по таким кабелям обычно не передавались.
  • В США используется для кабельных телевизионных сетей — со вспененным диэлектриком. Эти кабели имеют центральную жилу из омеднённой стали [6] , поэтому их стоимость незначительно зависит от диаметра центральной жилы. Поэтому. по предположению авторов [6] , причиной выбора этого номинала в США был компромисс между потерями в кабеле и гибкостью кабеля.

Также раньше имело значение согласование такого кабеля с волновым сопротивлением наиболее распространённого [ источник не указан 2336 дней ] типа антенн — полуволнового диполя (73 ом). Но поскольку коаксиальный кабель несимметричен, а полуволновой диполь симметричен по определению, для согласования требуется симметрирующее устройство, иначе оплётка кабеля (фидер) начинает работать как антенна.

  • 100 Ом — применяется редко, в импульсной технике и для специальных целей;
  • 150 Ом — применяется редко, в импульсной технике и для специальных целей, международными стандартами не предусмотрен;
  • 200 Ом — применяется крайне редко, международными стандартами не предусмотрен;
  • Имеются и иные номиналы; кроме того, существуют коаксиальные кабели с ненормируемым [источник не указан 3190 дней] волновым сопротивлением: наибольшее распространение они получили в аналоговойзвукотехнике.

По диаметру изоляции:

  • субминиатюрные — до 1 мм;
  • миниатюрные — 1,5—2,95 мм;
  • среднегабаритные — 3,7—11,5 мм;
  • крупногабаритные — более 11,5 мм.

По гибкости (стойкость к многократным перегибам и механический момент изгиба кабеля): жёсткие, полужёсткие, гибкие, особогибкие.

По степени экранирования:

  • со сплошным экраном
  • с экраном из металлической трубки
  • с экраном из лужёной оплётки
  • с обычным экраном
    • с однослойной оплёткой
    • с двух- и многослойной оплёткой и с дополнительными экранирующими слоями
    • излучающие кабели, имеющие намеренно низкую (и контролируемую) степень экранировки
    • Обозначения [ править | править код ]

      Обозначения советских кабелей [ править | править код ]

      По ГОСТ 11326.0-78 марки кабелей должны состоять из букв, означающих тип кабеля, и трёх чисел (разделённых дефисами).

      Первое число означает значение номинального волнового сопротивления.

      Второе число означает:

      • для коаксиальных кабелей — значение номинального диаметра по изоляции, округлённое до ближайшего меньшего целого числа для диаметров более 2 мм (за исключением диаметра 2,95 мм, который должен быть округлен до 3 мм, и диаметра 3,7 мм, который округлять не следует);
      • для кабелей со спиральными внутренними проводниками — значение номинального диаметра сердечника;
      • для двухпроводных кабелей с проводниками в отдельных экранах — значение диаметра по изоляции, округлённое так же, как и для коаксиальных кабелей;
      • для двухпроводных кабелей с проводниками в общей изоляции или скрученных из отдельно изолированных проводников — значение наибольшего размера по заполнению или диаметра по скрутке.

      Третье — двух- или трёхзначное число — означает: первая цифра — группу изоляции и категорию теплостойкости кабеля, а последующие цифры означают порядковый номер разработки. Кабелям соответствующей теплостойкости присвоено следующее цифровое обозначение:

      • 1 — обычной теплостойкости со сплошной изоляцией;
      • 2 — повышенной теплостойкости со сплошной изоляцией;
      • 3 — обычной теплостойкости с полувоздушной изоляцией;
      • 4 — повышенной теплостойкости с полувоздушной изоляцией;
      • 5 — обычной теплостойкости с воздушной изоляцией;
      • 6 — повышенной теплостойкости с воздушной изоляцией;
      • 7 — высокой теплостойкости.
      Читайте также:  Будет ли работать сабвуфер без усилителя

      К марке кабелей повышенной однородности или повышенной стабильности параметров в конце через тире добавляют букву С.

      Наличие буквы А («абонентский») в конце названия обозначает пониженное качество кабеля — отсутствие части проводников, составляющих экран.

      Пример условного обозначения радиочастотного коаксиального кабеля с номинальным волновым сопротивлением 50 Ом, со сплошной изоляцией обычной теплостойкости, номинальным диаметром по изоляции 4,6 мм и номером разработки 1 «Кабель РК 50-4-II ГОСТ (ТУ)*».

      Старые обозначения советских кабелей [ править | править код ]

      В 1950—1960-х годах в СССР применялась такая маркировка кабелей, в обозначении которой отсутствовали значимые компоненты. Маркировка состояла из букв «РК» и условного номера разработки. Например, обозначение «РК-50» означает не 50-омный кабель, а просто кабель с порядковым номером разработки «50», а его волновое сопротивление равно 157 Ом. [7]

      Международные обозначения [ править | править код ]

      Системы обозначений в разных странах устанавливаются международными, национальными стандартами, а также собственными стандартами предприятий-изготовителей (наиболее распространённые серии марок RG, DG, SAT). [8]

      Категории [ править | править код ]

      Кабели делятся по шкале Radio Guide. Наиболее распространённые категории кабеля:

      • RG-11 и RG-8 — «толстый Ethernet» (Thicknet), 75 Ом и 50 Ом соответственно. Стандарт 10BASE-5;
      • RG-58 — «тонкий Ethernet» (Thinnet), 50 Ом. Стандарт 10BASE-2:
      • RG-58/U — сплошной центральный проводник,
      • RG-58A/U — многожильный центральный проводник,
      • RG-58C/U — военный кабель;
      • RG-59 — телевизионный кабель (Broadband/Cable Television), 75 Ом. Российский аналог РК-75-х-х («радиочастотный кабель»);
      • RG-6 — телевизионный кабель (Broadband/Cable Television), 75 Ом. Кабель категории RG-6 имеет несколько разновидностей, которые характеризируют его тип и материал исполнения. Российский аналог РК-75-х-х;
      • RG-11 — магистральный кабель, практически незаменим, если требуется решить вопрос с большими расстояниями. Этот вид кабеля можно использовать даже на расстояниях около 600 м. Укреплённая внешняя изоляция позволяет без проблем использовать этот кабель в сложных условиях (улица, колодцы). Существует вариант S1160 с тросом, который используется для надёжной проброски кабеля по воздуху, например, между домами;
      • RG-62 — ARCNet, 93 Ом.

      «Тонкий» Ethernet [ править | править код ]

      Был наиболее распространённым кабелем для построения локальных сетей. Диаметр примерно 6 мм и значительная гибкость позволяли ему быть проложенным практически в любых местах. Кабели соединялись друг с другом и с сетевой платой в компьютере при помощи T-коннектора BNC. Между собой кабели могли соединяться с помощью I-коннектора BNC (прямое соединение). На обоих концах сегмента должны быть установлены терминаторы. Поддерживает передачу данных до 10 Мбит/с на расстояние до 185 м.

      «Толстый» Ethernet [ править | править код ]

      Более толстый, по сравнению с предыдущим, кабель — около 12 мм в диаметре, имел более толстый центральный проводник. Плохо гнулся и имел значительную стоимость. Кроме того, при присоединении к компьютеру были некоторые сложности — использовались трансиверы AUI (Attachment Unit Interface), присоединённые к сетевой карте с помощью ответвления, пронизывающего кабель, т. н. «вампирчики». За счёт более толстого проводника передачу данных можно было осуществлять на расстояние до 500 м со скоростью 10 Мбит/с. Однако сложность и дороговизна установки не дали этому кабелю такого широкого распространения, как RG-58. Исторически фирменный кабель RG-8 имел жёлтую окраску, и поэтому иногда можно встретить название «Жёлтый Ethernet» (англ. Yellow Ethernet ).

      Вспомогательные элементы коаксиального тракта [ править | править код ]

      • Коаксиальные соединители — для подключения кабелей к устройствам или их сочленения между собой, иногда кабели выпускаются из производства с установленными соединителями.
      • Коаксиальные переходы — для сочленения между собой кабелей с непарными друг другу соединителями.
      • Коаксиальные тройники, направленные ответвители и циркуляторы — для разветвлений и ответвлений в кабельных сетях.
      • Коаксиальные трансформаторы — для согласования по волновому сопротивлению при соединении кабеля с устройством или кабелей между собой.
      • Оконечные и проходные коаксиальные нагрузки, как правило, согласованные — для установления нужных режимов волны в кабеле.
      • Коаксиальные аттенюаторы — для ослабления уровня сигнала в кабеле до необходимого значения.
      • Ферритовые вентили — для поглощения обратной волны в кабеле.
      • Грозоразрядники на базе металлических изоляторов или газоразрядных устройств — для защиты кабеля и аппаратуры от атмосферных разрядов.
      • Коаксиальные переключатели, реле и электронные коммутирующие коаксиальные устройства — для коммутации коаксиальных линий.
      • Коаксиально-волноводные и коаксиально-полосковые переходы, симметрирующие устройства — для состыковки коаксиальных линий с волноводными, полосковыми и симметричными двухпроводными.
      • Проходные и оконечные детекторные головки — для контроля высокочастотного сигнала в кабеле по его огибающей.

      Основные нормируемые характеристики [ править | править код ]

      • Волновое сопротивление
      • Погонное ослабление на разных частотах
      • Погонная ёмкость
      • Погонная индуктивность
      • Коэффициент укорочения
      • Диаметр центральной жилы
      • Внутренний диаметр экрана
      • Внешний диаметр оболочки
      • Коэффициент стоячей волны
      • Максимальная передаваемая мощность
      • Максимальное допустимое напряжение
      • Минимальный радиус изгиба кабеля

      Расчёт характеристик [ править | править код ]

      Определение погонной ёмкости, погонной индуктивности и волнового сопротивления коаксиального кабеля по известным геометрическим размерам проводится следующим образом.

      Сначала необходимо измерить внутренний диаметр D экрана, сняв защитную оболочку с конца кабеля и завернув оплетку (внешний диаметр внутренней изоляции). Затем измеряют диаметр d центральной жилы, сняв предварительно изоляцию. Третий параметр кабеля, который необходимо знать для определения волнового сопротивления, — диэлектрическая проницаемость ε материала внутренней изоляции.

      Погонная ёмкость Ch (в Международной системе единиц (СИ), результат выражен в фарадах на метр) вычисляется [9] по формуле ёмкости цилиндрического конденсатора:

      C h = 2 π ε 0 ε ln ⁡ ( D / d ) , <displaystyle C_=<frac <2pi varepsilon _<0>varepsilon ><ln(D/d)>>,>

      Погонная индуктивность Lh (в системе СИ, результат выражен в генри на метр) вычисляется [9] по формуле

      L h = μ 0 μ 2 π ln ⁡ ( D / d ) , <displaystyle L_=<frac <mu _<0>mu ><2pi >>ln(D/d),>

      где μ — магнитная постоянная, μ — относительная магнитная проницаемость изоляционного материала, которая во всех практически важных случаях близка к 1.

      Волновое сопротивление коаксиального кабеля в системе СИ [10] :

      Omega >

      (приближённое равенство справедливо в предположении, что μ = 1).

      Волновое сопротивление коаксиального кабеля можно также определить по номограмме, приведённой на рисунке. Для этого необходимо соединить прямой линией точки на шкале D/d (отношения внутреннего диаметра экрана и диаметра внутренней жилы) и на шкале ε (диэлектрической проницаемости внутренней изоляции кабеля). Точка пересечения проведённой прямой со шкалой R номограммы соответствует искомому волновому сопротивлению.

      Скорость распространения сигнала в кабеле вычисляется по формуле

      v = 1 ε ε 0 μ μ 0 = c ε μ , <displaystyle v=<frac <1><sqrt <varepsilon varepsilon _<0>mu mu _<0>>>>=<frac <sqrt <varepsilon mu >>>,>

      где c — скорость света. При измерениях задержек в трактах, проектировании кабельных линий задержек и т. п. бывает полезно выражать длину кабеля в наносекундах, для чего используется обратная скорость сигнала, выраженная в наносекундах на метр: 1/ v = ε ·3,33 нс/м .

      Предельное электрическое напряжение, передаваемое коаксиальным кабелем, определяется электрической прочностью S изолятора (в вольтах на метр), диаметром внутреннего проводника (поскольку максимальная напряжённость электрического поля в цилиндрическом конденсаторе достигается возле внутренней обкладки) и в меньшей степени диаметром внешнего проводника:

      V p = S d 2 ln ⁡ ( D / d ) . <displaystyle V_

      =<frac <2>>ln(D/d).>

      admin

      Добавить комментарий

      Ваш e-mail не будет опубликован. Обязательные поля помечены *