0

Вероятность двух событий одновременно

1.4. Сложение и умножение вероятностей

Событие А называется частным случаем события В, если при наступлении А наступает и В. То, что А является частным случаем В, записывается как $A subset B$.

События А и В называются равными, если каждое из них является частным случаем другого. Равенство событий А и В записывается очевидно: А = В.

Суммой событий А и В называется событие А + В, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий: А или В.

Теорема о сложении вероятностей. Вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий.

Заметим, что сформулированная теорема справедлива для любого числа несовместных событий:

Если случайные события $A_1, A_2, . A_n$ образуют полную группу несовместных событий, то имеет место равенство $P(A_1)+P(A_2)+. +P(A_n)=1.$ Такие события (гипотезы) используются при решении задач на полную вероятность.

Произведением событий А и В называется событие АВ, которое наступает тогда и только тогда, когда наступают оба события: А и В одновременно. Случайные события А и B называются совместными, если при данном испытании могут произойти оба эти события.

Теорема о сложении вероятностей 2. Вероятность суммы совместных событий вычисляется по формуле

События событий А и В называются независимыми, если появление одного из них не меняет вероятности появления другого. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.

Теорема об умножении вероятностей. Вероятность произведения независимых событий А и В вычисляется по формуле:

Вероятность произведения зависимых событий вычисляется по формуле условной вероятности.

Примеры решений задач с событиями

Пример. В первом ящике 1 белый и 5 черных шаров, во втором 8 белых и 4 черных шара. Из каждого ящика вынули по шару. Найти вероятность того, что один из вынутых шаров белый, а другой – черный.

Решение. Обозначим события: А – вынули белый шар из первого ящика,
;

– вынули черный шар из первого ящика,
;

В – белый шар из второго ящика,
;

– черный шар из второго ящика,
.

Нам нужно, чтобы произошло одно из событий или . По теореме об умножении вероятностей
, .
Тогда искомая вероятность по теореме сложения будет
.

Пример. Вероятность попадания в цель у первого стрелка 0,8, у второго – 0,9. Стрелки делают по выстрелу. Найти вероятность: а) двойного попадания; б) двойного промаха, в) хотя бы одного попадания; г) одного попадания.

Пусть А – попадание первого стрелка, ;

В – попадание второго стрелка, .

Тогда – промах первого, ;

– промах второго, .

Найдем нужные вероятности.

а) АВ – двойное попадание,

б) – двойной промах, .

в) А+В – хотя бы одно попадание,

.

г) – одно попадание,

.

Пример. Решить задачу, применяя теоремы сложения и умножения. Мастер обслуживает 3 станка, работающих независимо друг от друга. Вероятность того, что первый станок потребует внимания рабочего в течение смены, равна 0,4, второй – 0,6, третий – 0,3. Найти вероятность того, что в течение смены: а) ни один станок не потребует внимания мастера, б) ровно 1 станок потребует внимания мастера.

Вводим базовые независимые события $A_i$ = (Станок $i$ потребовал внимания рабочего в течение смены), $i=1, 2, 3$. По условию выписываем вероятности: $p_1=0,4$, $p_2=0,6$, $p_3=0,3$. Тогда $q_1=0,6$, $q_2=0,4$, $q_3=0,7$.

Найдем вероятность события $X$=(Ни один станок не потребует внимания в течение смены):

$$ P(X)=Pleft(overline cdot overline cdot overline
ight)= q_1 cdot q_2 cdot q_3 = 0,6cdot 0,4 cdot 0,7 = 0,168. $$

Найдем вероятность события $Z$= (Ровно один станок потребует внимания в течение смены):

$$ P(Z)= \ = P(A_1) cdot Pleft(overline
ight) cdot Pleft(overline
ight) + Pleft(overline
ight) cdot P(A_2) cdot Pleft(overline

ight) + Pleft(overline
ight) cdot Pleft(overline

ight) cdot P(A_3)=\ = p_1 cdot q_2 cdot q_3 + q_1 cdot p_2 cdot q_3 + q_1 cdot q_2 cdot p_3 =\ = 0,4cdot 0,4 cdot 0,7+0,6cdot 0,6 cdot 0,7+0,6cdot 0,4 cdot 0,3 = 0,436. $$

Пример. Студент разыскивает нужную ему формулу в трех справочниках. Вероятности того, что формула содержится в первом, втором и третьем справочниках равны 0,6; 0,7 и 0,8. Найти вероятности того, что формула содержится 1) только в одном справочнике; 2) только в двух справочниках; 3) во всех трех справочниках.

Читайте также:  Душевые уголки отзывы плюсы и минусы

А – формула содержится в первом справочнике;

В – формула содержится во втором справочнике;

С – формула содержится в третьем справочнике.

Воспользуемся теоремами сложения и умножения вероятностей.

1.

2. .

3.

Вероятность наступления хотя бы одного события

Пусть в результате испытания могут появиться n событий, независимых в совокупности, либо некоторые из них (в частности, только одно или ни одного), причем вероятности появления каждого из событий известны. Как найти вероятность того, что наступит хотя бы одно из этих событий?

Например, если в результате испытания могут появиться три события, то появление хотя бы одного из этих событий означает наступление либо одного, либо двух, либо трех событий. Ответ на поставленный вопрос дает следующая теорема.

Теорема. Вероятность появления хотя бы одного из событий $A_1, A_2, . A_n$, независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий

$$ P(A)=1-Pleft(overline
ight)cdot Pleft(overline
ight)cdot . cdot Pleft(overline
ight)= 1-q_1 cdot q_2 cdot . cdot q_n. $$

Если события $A_1, A_2, . A_n$ имеют одинаковую вероятность $p$, то формула принимает простой вид:

Примеры решений на эту тему

Пример. Вероятности попадания в цель при стрельбе из трех орудий таковы: p1 = 0,8; p2 = 0,7; p3 = 0,9. Найти вероятность хотя бы одного попадания (событие А) при одном залпе из всех орудий.

Решение. Вероятность попадания в цель каждым из орудий не зависит от результатов стрельбы из других орудий, поэтому рассматриваемые события (попадание первого орудия), (попадание второго орудия) и (попадание третьего орудия) независимы в совокупности.

Вероятности событий, противоположных событиям , и (т. е. вероятности промахов), соответственно равны:

, ,

Искомая вероятность .

Пример. В типографии имеется 4 плоскопечатных машины. Для каждой машины вероятность того, что она работает в данный момент, равна 0,9. Найти вероятность того, что в данный момент работает хотя бы одна машина (событие А).

Решение. События "машина работает" и "машина не работает" (в данный момент) — противоположные, поэтому сумма их вероятностей равна единице:

Отсюда вероятность того, что машина в данный момент не работает, равна

Искомая вероятность

Так как полученная вероятность весьма близка к единице, то на основании следствия из принципа практической невозможности маловероятных событий мы вправе заключить, что в данный момент работает хотя бы одна из машин.

Пример. Вероятность того, что при одном выстреле стрелок попадает в цель, равна 0,4. Сколько выстрелов должен произвести стрелок, чтобы с вероятностью не менее 0,9 он попал в цель хотя бы один раз?

Решение. Обозначим через А событие "при n выстрелах стрелок попадает в цель хотя бы один раз". События, состоящие в попадании в цель при первом, втором выстрелах и т. д., независимы в совокупности, поэтому применима формула .

Приняв во внимание, что, по условию, (следовательно, ), получим

Прологарифмируем это неравенство по основанию 10:

Итак, , т.е. стрелок должен произвести не менее 5 выстрелов.

Теорема умножения вероятностей для независимых событий

P(AB) = P(A)*P(B) вероятность одновременного наступления двух независимых событий равна произведению вероятностей этих событий.

Пример 1. Вероятности попадания в цель при стрельбе первого и второго орудий соответственно равны: р1 = 0,7; р2 = 0,8. Найти вероятность попадания при одном залпе обоими орудиями одновременно.

как мы уже видели события А (попадание первого орудия) и В (попадание второго орудия) независимы, т.е. Р(АВ)=Р(А)*Р(В)=р1*р2=0,56. Что произойдет с нашими оценками, если исходные события не являются независимыми? Давайте немного изменим предыдущий пример.

Пример 2. Два стрелка на соревнованиях стреляют по мишеням, причем, если один из них стреляет метко, то соперник начинает нервничать, и его результаты ухудшаются. Как превратить эту житейскую ситуацию в математическую задачу и наметить пути ее решения? Интуитивно понятно, что надо каким-то образом разделить два варианта развития событий, составить по сути дела два сценария, две разные задачи. В первом случае, если соперник промахнулся, сценарий будет благоприятный для нервного спортсмена и его меткость будет выше. Во втором случае, если соперник прилично реализовал свой шанс, вероятность поразить мишень для второго спортсмена снижается. Для разделения возможных сценариев (их часто называют гипотезами) развития событий мы будем часто использовать схему "дерева вероятностей". Эта схема похожа по смыслу на дерево решений, с которым Вам, наверное, уже приходилось иметь дело. Каждая ветка представляет собой отдельный сценарий развития событий, только теперь она имеет собственное значение так называемой условной вероятности (q1, q2, q1-1, q2-1).

Читайте также:  Как включить звук на проекторе

Эта схема очень удобна для анализа последовательных случайных событий. Остается выяснить еще один немаловажный вопрос: откуда берутся исходные значения вероятностей в реальных ситуациях? Ведь не с одними же монетами и игральными костями работает теория вероятностей? Обычно эти оценки берутся из статистики, а когда статистические сведения отсутствуют, мы проводим собственное исследование. И начинать его нам часто приходится не со сбора данных, а с вопроса, какие сведения нам вообще нужны.

Пример 3. Допустим, нам надо оценить в городе с населением в сто тысяч жителей объем рынка для нового товара, который не является предметом первой необходимости, например, для бальзама по уходу за окрашенными волосами. Рассмотрим схему "дерева вероятностей". При этом значение вероятности на каждой "ветке" нам надо приблизительно оценить. Итак, наши оценки емкости рынка:

1) из всех жителей города женщин 50%,

2) из всех женщин только 30% красят волосы часто,

3) из них только 10% пользуются бальзамами для окрашенных волос,

4) из них только 10% могут набраться смелости попробовать новый товар,

5) из них 70% обычно покупает все не у нас, а у наших конкурентов.

По закону перемножения вероятностей, определяем вероятность интересующего нас события А =<житель города покупает у нас этот новый бальзам>=0,00045. Умножим это значение вероятности на число жителей города. В результате имеем всего 45 потенциальных покупательниц, а если учесть, что одного пузырька этого средства хватает на несколько месяцев, не слишком оживленная получается торговля. И все-таки польза от наших оценок есть. Во-первых, мы можем сравнивать прогнозы разных бизнес-идей, на схемах у них будут разные "развилки", и, конечно, значения вероятности тоже будут разные. Во-вторых, как мы уже говорили, случайная величина не потому называется случайной, что она совсем ни от чего не зависит. Просто ее точное значение заранее не известно. Мы знаем, что среднее количество покупателей может быть увеличено (например, с помощью рекламы нового товара). Так что имеет смысл сосредоточить усилия на тех "развилках", где распределение вероятностей нас особенно не устраивает, на тех факторах, на которые мы в состоянии повлиять. Рассмотрим еще один количественный пример исследования покупательского поведения.

Пример 3. За день продовольственный рынок посещает в среднем 10000 человек. Вероятность того, что посетитель рынка заходит в павильон молочных продуктов, равна 1/2. Известно, что в этом павильоне в среднем продается в день 500 кг различных продуктов. Можно ли утверждать, что средняя покупка в павильоне весит всего 100 г?

Конечно, нельзя. Понятно, что не каждый, кто заходил в павильон, в результате что-то там купил.

Как показано на схеме, чтобы ответить на вопрос о среднем весе покупки, мы должны найти ответ на вопрос, какова вероятность того, что человек, зашедший в павильон, что-нибудь там купит. Если таких данных в нашем распоряжении не имеется, а нам они нужны, придется их получить самим, понаблюдав некоторое время за посетителями павильона. Допустим, наши наблюдения показали, что только пятая часть посетителей павильона что-то покупает. Как только эти оценки нами получены, задача становится уже простой. Из 10000 человек, пришедших на рынок, 5000 зайдут в павильон молочных продуктов, покупок будет только 1000. Средний вес покупки равен 500 грамм. Интересно отметить, что для построения полной картины происходящего, логика условных "ветвлений" должна быть определена на каждом этапе нашего рассуждения так же четко, как если бы мы работали с "конкретной" ситуацией, а не с вероятностями.

Задачи для самопроверки.

1. Пусть есть электрическая цепь, состоящая из n последовательно соединенных элементов, каждый из которых работает независимо от остальных. Известна вероятность p невыхода из строя каждого элемента. Определите вероятность исправной работы всего участка цепи (событие А).

2. Студент знает 20 из 25 экзаменационных вопросов. Найдите вероятность того, что студент знает предложенные ему экзаменатором три вопроса.

3. Производство состоит из четырех последовательных этапов, на каждом из которых работает оборудование, для которого вероятности выхода из строя в течение ближайшего месяца равны соответственно р1, р2, р3 и р4. Найдите вероятность того, что за месяц не случится ни одной остановки производства из-за неисправности оборудования.

Читайте также:  Домофоны цифрал модели с фото
Вероятность суммы двух событий
Несовместные события
Независимость двух событий. Вероятность произведения двух независимых событий

Вероятность суммы двух событий

Справедливо следующее утверждение.

Утверждение 1. Вероятность суммы двух событий равна сумме вероятностей этих событий минус вероятность их произведения.

Другими словами, верна формула:

(1)
Событие A Событие B
Событие A + B Событие
Событие A
Событие B
Событие A + B
Событие

Проведем доказательство утверждения 1 на примере геометрического определения вероятности.

Если площадь произвольной фигуры F обозначить символом S (F) , то из рисунка 1 легко установить справедливость равенства:

, (2)

которое словами можно выразить так: «Площадь фигуры A + B равна сумме площадей фигур A и B минус площадь фигуры ».

Если обе части равенства (2) разделить на число S (Ω) , то мы получим равенство

с помощью которых равенство (3) преобразуется к виду (1), что и завершает доказательство утверждения 1.

Доказательство утверждения 1 для классического определения вероятности проводится аналогичным образом, и мы оставляем его читателю в качестве полезного упражнения.

Несовместные события

Определение. Два события A и B называют несовместными , если они не пересекаются.

Другими словами, события A и B несовместны, если

Замечание 1. События A и B несовместны в том, и только в том случае, если событие B является подмножеством события , то есть .

Замечание 2. События A и B несовместны в том, и только в том случае, если событие A является подмножеством события , то есть .

Замечание 3. Если события A и B несовместны, то вероятность их произведения равна нулю.

Другими словами, для несовместных событий A и B верна формула

Замечание 4. Если события A и B несовместны, то вероятность суммы событий A + B равна сумме вероятностей событий A и B .

Другими словами, для несовместных событий A и B верна формула

Независимость двух событий. Вероятность произведения двух независимых событий

Два события A и B называют независимыми , если появление одного из этих событий никак не влияет на вероятность появления второго события.

Замечание 5. Несовместные события и независимые события – это совершенно разные понятия, и их не следует путать.

Справедливо следующее утверждение.

Утверждение 2. Вероятность произведения двух независимых событий равна произведению их вероятностей.

Другими словами, для двух независимых событий A и B верна формула

(4)

Проиллюстрируем справедливость формулы (4) на примере.

Пример 1. Случайный эксперимент состоит в подбрасывании двух игральных костей. Одна из игральных костей окрашена в синий цвет, другая – в красный. Найти вероятность того, что на синей игральной кости выпадет число 3 , а на красной игральной кости выпадет число 4 .

Решение. Сформируем следующую таблицу, в которой записаны все 36 возможных вариантов пар чисел, выпадающих при подбрасывании двух игральных костей. Первая строка таблицы – это числа, выпавшие при бросании синей кости, а первый столбец таблицы – это числа, выпавшие при бросании красной кости. На пересечении строки и столбца указана пара чисел, выпавших на двух костях.

1 2 3 4 5 6 1 1 , 1 1 , 2 1 , 3 1 , 4 1 , 5 1 , 6 2 2 , 1 2 , 2 2 , 3 2 , 4 2 , 5 2 , 6 3 3 , 1 3 , 2 3 , 3 3 , 4 3 , 5 3 , 6 4 4 , 1 4 , 2 4 , 3 4 , 4 4 , 5 4 , 6 5 5 , 1 5 , 2 5 , 3 5 , 4 5 , 5 5 , 6 6 6 , 1 6 , 2 6 , 3 6 , 4 6 , 5 6 , 6

Благоприятным является только один исход, а именно, клетка с результатом 4 , 3 , окрашенная в таблице желтым цветом. Следовательно, вероятность события, состоящего в том, что на синей игральной кости выпадает число 3 , а на красной игральной кости выпадает число 4 , равна .

Теперь рассмотрим случайный эксперимент, описанный в примере 1, с другой стороны. Для этого обозначим буквой A случайное событие, состоящее в том, что на синей игральной кости выпадает число 3 , а буквой B – случайное событие, состоящее в том, что на красной игральной кости выпадает число 4 . События A и B являются независимыми событиями, а их вероятности равны:

Событие состоит в том, что на синей игральной кости выпадет число 3 , а на красной игральной кости выпадет число 4 . Поскольку,

то в рассматриваемом случайном эксперименте по подбрасыванию двух игральных костей формула (4) верна.

Пример 2. Два стрелка стреляют по мишени. Первый стрелок поражает мишень с вероятностью 0,9 . Второй стрелок поражает мишень с вероятностью 0,8 . Найти вероятность того, что мишень будет поражена.

Решение. Обозначим буквой A случайное событие, состоящее в том, что в мишень попадает первый стрелок, а буквой B обозначим случайное событие, состоящее в том, что в мишень попадает второй стрелок. Тогда событие A + B означает, что мишень поражена, а событие означает, что в мишень попали оба стрелка. По условию

а поскольку события A и B независимы, то в силу формулы (4)

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *