0

Задачи на напряженность поля

Напряжённость электрического (электростатического) поля — параметр поля, описывающий на сколько сильно или слабо поле действует на выбранный заряд. Задачи на эту тему можно разделить на две группы:

  • поиск напряжённости известного распределения зарядов (точечные заряды, система точечных зарядов, шар, бесконечная плоскость). Для системы зарядов (больше одного) используют принцип суперпозиции для вектора напряжённости электрического поля.
  • использование напряжённости электрического поля для поиска силы Кулона ( ). При этом чаще всего рассматривается второй закон Ньютона.

Ещё одним часто используемым соотношением в таких задачах является связь между напряжением и напряжённостью:

Электростатика
§ 14. Напряженность электрического поля. Электрическое смещение

Условия задач и ссылки на решения на тему:

1 Электрическое поле создано двумя точечными зарядами Q1= 30 нКл Q2=-10 нКл. Расстояние между зарядами равно 20 см. Определить напряженность электрического поля в точке, находящейся на расстоянии r1=15 см от первого и на расстоянии r2=10 см от второго зарядов
РЕШЕНИЕ

2 Электрическое поле создано двумя параллельными бесконечными заряженными плоскостями с поверхностными плотностями заряда 0,4 и 0,1 мкКл/м2. Определить напряженность электрического поля, созданного этими заряженными плоскостями.
РЕШЕНИЕ

3 На пластинах плоского воздушного конденсатора находится заряд Q=10 нКл. Площадь каждой пластины конденсатора равна 100 см2. Определить силу, с которой притягиваются пластины. Поле между пластинами считать однородным
РЕШЕНИЕ

4 Электрическое поле создано бесконечной плоскостью, заряженной с поверхностной плотностью 400 нКл/м2, и бесконечной прямой нитью, заряженной с линейной плотностью τ=100 нКл/м. На расстоянии 10 см от нити находится точечный заряд Q=10 нКл. Определить силу, действующую на заряд, ее направление, если заряд и нить лежат в одной плоскости, параллельной заряженной плоскости
РЕШЕНИЕ

5 Точечный заряд Q=25 нКл находится в поле, созданном прямым бесконечным цилиндром радиусом R=1 см, равномерно заряженным с поверхностной плотностью 2 мкКл/м2. Определить силу, действующую на заряд, помещенный от оси цилиндра на расстоянии r=10 см
РЕШЕНИЕ

6 Электрическое поле создано тонкой бесконечно длинной нитью, равномерно заряженной с линейной плотностью 30 нКл/м. На расстоянии a=20 см от нити находится плоская круглая площадка радиусом r=1 см. Определить поток вектора напряженности через эту площадку, если плоскость ее составляет угол β=30° с линией напряженности, проходящей через середину площадки.
РЕШЕНИЕ

7 Две концентрические проводящие сферы радиусами R1=6 см и R2=10 см несут соответственно заряды Q1=1 нКл и Q2=-0,5 нКл. Найти напряженность поля в точках, отстоящих от центра сфер на расстояниях r1=5 см, r2=9 см и r3=15 см. Построить график E(r)
РЕШЕНИЕ

14.1 Определить напряженность электрического поля, создаваемого точечным зарядом Q=10 нКл на расстоянии r=10 см от него. Диэлектрик масло.
РЕШЕНИЕ

14.2 Расстояние между двумя точечными зарядами Q1=+8 нКл и Q2=-5,3 нКл равно 40 см. Вычислить напряженность поля в точке, лежащей посередине между зарядами. Чему равна напряженность, если второй заряд будет положительным?
РЕШЕНИЕ

14.3 Электрическое поле создано двумя точечными зарядами Q1=10 нКл и Q2=-20 нКл, находящимися на расстоянии d=20 см друг от друга. Определить напряженность поля в точке, удаленной от первого заряда на r1=30 см и от второго на r2=50 см.
РЕШЕНИЕ

14.4 Расстояние между двумя точечными положительными зарядами Q1=9Q и Q2=Q равно 8 см. На каком расстоянии r от первого заряда находится точка, в которой напряженность поля зарядов равна нулю? Где находилась бы эта точка, если бы второй заряд был отрицательным?
РЕШЕНИЕ

14.5 Два точечных заряда Q1=2Q и Q2=-Q находятся на расстоянии d друг от друга. Найти положение точки на прямой, проходящей через эти заряды, напряженность E поля в которой равна нулю
РЕШЕНИЕ

14.6 Электрическое поле создано двумя точечными зарядами Q1=40 нКл и Q2=-10 нКл, находящимися на расстоянии 10 см друг от друга. Определить напряженность поля в точке, удаленной от первого заряда на r1=12 см и от второго на r2=6 см.
РЕШЕНИЕ

14.7 Тонкое кольцо радиусом R=8 см несет заряд, равномерно распределенный с линейной плотностью т=10 нКл/м. Какова напряженность электрического поля в точке, равноудаленной от всех точек кольца на расстояние r= 10 см?
РЕШЕНИЕ

14.8 Полусфера несет заряд, равномерно распределенный с поверхностной плотностью 1 нКл/м2. Найти напряженность электрического поля в геометрическом центре полусферы.
РЕШЕНИЕ

14.9 На металлической сфере радиусом R=10 см находится заряд Q=1 нКл. Определить напряженность электрического поля в следующих точках: на расстоянии r1=8 см от центра сферы; на ее поверхности; на расстоянии r2=15 см от центра сферы. Построить график зависимости E от r.
РЕШЕНИЕ

14.10 Две концентрические металлические заряженные сферы радиусами R1=6 см и R2=10 см несут соответственно заряды Q1=1 нКл и Q2=-0,5 нКл. Найти напряженности E поля в точках, отстоящих от центра сфер на расстояниях r1=5 см, r2=9 см, r3=15 см. Построить график зависимости E(r).
РЕШЕНИЕ

14.11 Очень длинная тонкая прямая проволока несет заряд, равномерно распределенный по всей ее длине. Вычислить линейную плотность заряда, если напряженность поля на расстоянии a=0,5 м от проволоки против ее середины равна 200 В/м.
РЕШЕНИЕ

14.12 Расстояние между двумя длинными тонкими проволоками, расположенными параллельно друг другу, равно 16 см. Проволоки равномерно заряжены разноименными зарядами с линейной плотностью т=150 мкКл/м. Какова напряженность поля в точке, удаленной на r=10 см как от первой, так и от второй проволоки?
РЕШЕНИЕ

14.13 Прямой металлический стержень диаметром d=5 см и длиной 4 м несет равномерно распределенный по его поверхности заряд Q=500 нКл. Определить напряженность E поля в точке, находящейся против середины стержня на расстоянии a=1 см от его поверхности.
РЕШЕНИЕ

14.14 Бесконечно длинная тонкостенная металлическая трубка радиусом R=2 см несет равномерно распределенный по поверхности заряд 1 нКл/м2. Определить напряженность E поля в точках, отстоящих от оси трубки на расстояниях r1=1 см, r2=3 см. Построить график зависимости E(r).
РЕШЕНИЕ

14.15 Две длинные тонкостенные коаксиальные трубки радиусами R1=2 см и R2=4 см несут заряды, равномерно распределенные по длине с линейными плотностями τ1=1 τ2=-0,5 нКл/м. Пространство между трубками заполнено эбонитом. Определить напряженность E поля в точках, находящихся на расстояниях r1= 1 см, r2=3 см, r3=5 см от оси трубок. Построить график зависимости E от r.
РЕШЕНИЕ

14.16 На отрезке тонкого прямого проводника длиной 10 см равномерно распределен заряд с линейной плотностью τ=3 мкКл/м. Вычислить напряженность E, создаваемую этим зарядом в точке, расположенной на оси проводника и удаленной от ближайшего конца отрезка на расстояние, равное длине этого отрезка.
РЕШЕНИЕ

Читайте также:  Видеорегистратор со стеклянной оптикой

14.17 Тонкий стержень длиной l=12 см заряжен с линейной плотностью τ=200 нКл/м. Найти напряженность электрического поля в точке, находящейся на расстоянии r=5 см от стержня против его середины.
РЕШЕНИЕ

14.18 Тонкий стержень длиной l=10 см заряжен с линейной плотностью τ=400 нКл/м. Найти напряженность E электрического поля в точке, расположенной на перпендикуляре к стержню, проведенном через один из его концов, на расстоянии r=8 см от этого конца.
РЕШЕНИЕ

14.19 Электрическое поле создано зарядом тонкого равномерно заряженного стержня, изогнутого по трем сторонам квадрата. Длина стороны квадрата равна 20 см. Линейная плотность т зарядов равна 500 нКл/м. Вычислить напряженность E поля в точке A.
РЕШЕНИЕ

14.20 Два прямых тонких стержня длиной 12 см и 16 см каждый заряжены с линейной плотностью т=400 нКл/м. Стержни образуют прямой угол. Найти напряженность E поля в точке A (рис. 14.10).
РЕШЕНИЕ

14.21 Электрическое поле создано двумя бесконечными параллельными пластинами, несущими одинаковый равномерно распределенный по площади заряд 1 нКл/м2. Определить напряженность E поля между пластинами; вне пластин. Построить график изменения напряженности вдоль линии, перпендикулярной пластинам.
РЕШЕНИЕ

14.22 Электрическое поле создано двумя бесконечными параллельными пластинами, несущими равномерно распределенный по площади заряд с поверхностными плотностями 1 нКл/м2 и 3 нКл/м2. Определить напряженность E поля между пластинами; вне пластин. Построить график изменения напряженности вдоль линии, перпендикулярной пластинам.
РЕШЕНИЕ

14.23 Электрическое поле создано двумя бесконечными параллельными пластинами, несущими равномерно распределенный по площади заряд с поверхностными плотностями 2 нКл/м2 и -5 нКл/м2. Определить напряженность поля между пластинами; вне пластин. Построить график изменения напряженности вдоль линии, перпендикулярной пластинам
РЕШЕНИЕ

14.24 Две прямоугольные одинаковые параллельные пластины, длины сторон которых a=10 см и b = 15 см, расположены на малом по сравнению с линейными размерами пластин расстоянии друг от друга. На одной из пластин равномерно распределен заряд Q1 =50 нКл, на другой заряд Q2= 150 нКл. Определить напряженность электрического поля между пластинами
РЕШЕНИЕ

14.25 Две бесконечные параллельные пластины равномерно заряжены с поверхностной плотностью 10 нКл/м2 и -30 нКл/м2. Определить силу взаимодействия между пластинами, приходящуюся на площадь, равную 1 м2.
РЕШЕНИЕ

14.26 Две круглые параллельные пластины радиусом R=10 см находятся на малом по сравнению с радиусом расстоянии друг от друга. Пластинам сообщили одинаковые по модулю, но противоположные по знаку заряды Q1=Q2=Q. Определить этот заряд, если пластины притягиваются с силой F=2 мН. Считать, что заряды распределяются по пластинам равномерно.
РЕШЕНИЕ

14.27 Эбонитовый сплошной шар радиусом R=5 см несет заряд, равномерно распределенный с объемной плотностью 10 нКл/м3. Определить напряженность и смещение электрического поля в точках на расстоянии r1=3 см от центра сферы; на поверхности сферы; на расстоянии r2=10 см от центра сферы. Построить графики зависимостей E(r) и D(r).
РЕШЕНИЕ

14.28 Полый стеклянный шар несет равномерно распределенный по объему заряд. Его объемная плотность 100 нКл/м3. Внутренний радиус R1 шара равен 5 см, наружный R2=10 см. Вычислить напряженность E и смещение D электрического поля в точках, отстоящих от центра сферы на расстоянии r1=3 см; r2=6 см; r3=12 см. Построить графики зависимостей E(r) и D(r).
РЕШЕНИЕ

14.29 Длинный парафиновый цилиндр радиусом R=2 см несет заряд, равномерно распределенный по объему с объемной плотностью 10 нКл/м3. Определить напряженность E и смещение D электрического поля в точках, находящихся от оси цилиндра на расстоянии r1=1 см; r2=3 см. Обе точки равноудалены от концов цилиндра. Построить графики зависимостей E(r) и D(r).
РЕШЕНИЕ

14.30 Большая плоская пластина толщиной d=1 см несет заряд, равномерно распределенный по объему с объемной плотностью 100 нКл/м3. Найти напряженность электрического поля вблизи центральной части пластины вне ее, на малом расстоянии от поверхности.
РЕШЕНИЕ

14.31 Лист стекла толщиной d=2 см равномерно заряжен с объемной плотностью 1 мкКл/м3. Определить напряженность E и смещение D электрического поля в точках A, B, C. Построить график зависимости E(x) ось x координат перпендикулярна поверхности листа стекла
РЕШЕНИЕ

14.32 На некотором расстоянии a=5 см от бесконечной проводящей плоскости находится точечный заряд Q=1 нКл. Определить силу, действующую на заряд со стороны индуцированного им заряда на плоскости.
РЕШЕНИЕ

14.33 На расстоянии a=10 см от бесконечной проводящей плоскости находится точечный заряд Q=20 нКл. Вычислить напряженность электрического поля в точке, удаленной от плоскости на расстояние а и от заряда Q на расстояние 2а.
РЕШЕНИЕ

14.34 Точечный заряд Q=40 нКл находится на расстоянии 30 см от бесконечной проводящей плоскости. Какова напряженность E электрического поля в точке A (рис. 14.12)?
РЕШЕНИЕ

14.35 Большая металлическая пластина расположена в вертикальной плоскости и соединена с землей. На расстоянии a=10 см от пластины находится неподвижная точка, к которой на нити длиной ℓ=12 см подвешен маленький шарик массой m=0,1 г. При сообщении шарику заряда Q он притянулся к пластине, в результате чего нить отклонилась от вертикали на угол α=30°. Найти заряд Q шарика.
РЕШЕНИЕ

14.36 Тонкая нить несет равномерно распределенный по длине заряд с линейной плотностью τ=2 мкКл/м. Вблизи средней части нити на расстоянии r=1 см, малом по сравнению с ее длиной, находится точечный заряд Q=0,1 мкКл. Определить силу F, действующую на заряд.
РЕШЕНИЕ

14.37 Большая металлическая пластина несет равномерно распределенный по поверхности заряд 10 нКл/м2. На малом расстоянии от пластины находится точечный заряд Q=100 нКл. Найти силу F, действующую на заряд.
РЕШЕНИЕ

14.38 Точечный заряд Q=1 мкКл находится вблизи большой равномерно заряженной пластины против ее середины. Вычислить поверхностную плотность заряда пластины, если на точечный заряд действует сила F=60 мН.
РЕШЕНИЕ

14.39 Между пластинами плоского конденсатора находится точечный заряд Q=30 нКл. Поле конденсатора действует на заряд с силой F1=10 мН. Определить силу F2 взаимного притяжения пластин, если площадь 5 каждой пластины равна 100 см2.
РЕШЕНИЕ

14.40 Параллельно бесконечной пластине, несущей заряд, равномерно распределенный по площади с поверхностной плотностью 20 нКл/м2. расположена тонкая нить с равномерно распределенным по длине зарядом (т=0,4 нКл/м). Определить силу F, действующую на отрезок нити длиной ℓ=1 м.
РЕШЕНИЕ

14.41 Две одинаковые круглые пластины площадью по 100 см2 каждая расположены параллельно друг другу. Заряд Q1 одной пластины равен +100 нКл, другой Q2=-100 нКл. Определить силу F взаимного притяжения пластин в двух случаях, когда расстояние между ними: 1) r1=2 см; 2) r2=10 м.
РЕШЕНИЕ

14.42 Плоский конденсатор состоит из двух пластин, разделенных стеклом. Какое давление производят пластины на стекло перед пробоем, если напряженность E электрического поля перед пробоем равна 30 МВ/м?
РЕШЕНИЕ

Читайте также:  Забыл пароль для разблокировки iphone

14.43 Две параллельные, бесконечно длинные прямые нити несут заряд, равномерно распределенный по длине с линейными плотностями τ1=0,1 мкКл/м и τ2=0,2 мкКл/м. Определить силу взаимодействия, приходящуюся на отрезок нити длиной 1 м. Расстояние между нитями равно 10 см.
РЕШЕНИЕ

14.44 Прямая, бесконечная, тонкая нить несет равномерно распределенный по длине заряд 1 мкКл/м. В плоскости, содержащей нить, перпендикулярно нити находится тонкий стержень длиной l. Ближайший к нити конец стержня находится на расстоянии l от нее. Определить силу , действующую на стержень, если он заряжен с линейной плотностью τ2=0,1 мкКл/м.
РЕШЕНИЕ

14.45 Металлический шар имеет заряд Q1=0,1 мкКл. На расстоянии, равном радиусу шара, от его поверхности находится конец нити, вытянутой вдоль силовой линии. Нить несет равномерно распределенный по длине заряд Q2= 10 нКл. Длина нити равна радиусу шара. Определить силу F, действующую на нить, если радиус шара равен 10 см.
РЕШЕНИЕ

14.46 Соосно с бесконечной прямой равномерно заряженной линией 0,5 мкКл/м расположено полукольцо с равномерно распределенным зарядом 20 нКл/м. Определить силу F взаимодействия нити с полукольцом.
РЕШЕНИЕ

14.47 Бесконечная прямая нить несет равномерно распределенный заряд с линейной плотностью τ1=1 мкКл/м. Соосно с нитью расположено тонкое кольцо, заряженное равномерно с линейной плотностью τ2=10 нКл/м. Определить силу, растягивающую кольцо. Взаимодействием между отдельными элементами кольца пренебречь.
РЕШЕНИЕ

14.48 Две бесконечно длинные равномерно заряженные тонкие нити τ1=τ2=τ=1 мкКл/м скрещены под прямым углом друг к другу. Определить силу их взаимодействия.
РЕШЕНИЕ

14.49 Бесконечная плоскость несет заряд, равномерно распределенный с поверхностной плотностью 1 мкКл/м2. На некотором расстоянии от плоскости параллельно ей расположен круг радиусом r = 10 см. Вычислить поток ФЕ вектора напряженности через этот круг.
РЕШЕНИЕ

14.50 Плоская квадратная пластина со стороной длиной a, равной 10 см, находится на некотором расстоянии от бесконечной равномерно заряженной 1 мкКл/м2 плоскости. Плоскость пластины составляет угол 30 с линиями поля. Найти поток электрического смещения через эту пластину.
РЕШЕНИЕ

14.51 В центре сферы радиусом R=20 см находится точечный заряд Q=10 нКл. Определить поток вектора напряженности через часть сферической поверхности площадью S=20 см2
РЕШЕНИЕ

14.52 В вершине конуса с телесным углом 0,5 ср находится точечный заряд Q=30 нКл. Вычислить поток электрического смещения через площадку, ограниченную линией пересечения поверхности конуса с любой другой поверхностью.
РЕШЕНИЕ

14.53 Прямоугольная плоская площадка со сторонами, длины а и b которых равны 3 и 2 см соответственно, находится на расстоянии R= 1 м от точечного заряда Q=1 мкКл. Площадка ориентирована так, что линии напряженности составляют угол 30 с ее поверхностью. Найти поток вектора напряженности через площадку
РЕШЕНИЕ

14.54 Электрическое поле создано точечным зарядом Q=0,1 мкКл. Определить поток электрического смещения через круглую площадку радиусом R =30 см. Заряд равноудален от краев площадки и находится на расстоянии a=40 см от ее центра
РЕШЕНИЕ

14.55 Заряд Q=1 мкКл равноудален от краев круглой площадки на расстоянии r=20 см. Радиус площадки равен 12 см. Определить среднее значение напряженности E в пределах площадки
РЕШЕНИЕ

14.56 Электрическое поле создано бесконечной прямой равномерно заряженной линией 0,3 мкКл/м. Определить поток электрического смещения через прямоугольную площадку, две большие стороны которой параллельны заряженной линии и одинаково удалены от нее на расстояние r=20 см. Стороны площадки имеют размеры a=20 см, b=40 см
РЕШЕНИЕ

Пример 1. Два одинаковых положительных точечных заряда находятся на расстоянии 2L = 10 см друг от друга. Найти на прямой МN (см. схему), являющейся осью симметрии этих зарядов, точку, в которой напряженность электрического поля имеет максимум.

Решение.Напряженность электрического поля в любой точке прямой МN складывается из напряженностей и , созданных в этой точке зарядами q1 и q2:

= 1 + 2.

При этом в точке О, лежащей между зарядами, сумма векторов и , одинаковыхпо модулю и противоположных по направлению, равна нулю.

Найдем напряженность поля в произвольной точке А прямой МN. Как видно из схемы,

где j – угол между и осью МN. Обозначив отрезок ОА через х и учитывая соотношения

вместо равенства (1) на основании формулы для напряженности электрического поля, созданного точечным зарядом,

. (2)

Эта формула выражает модуль вектора в произвольной точке прямой МN как функцию координаты х этой точки. Чтобы найти максимум функции, продифференцируем ее по х и приравняем нулю производную:

см.

Два значения х соответствуют двум точкам, расположенным по обе стороны от точки О на расстоянии 3.5 см от нее.

Пример 2.Определить потенциал электрического поля точечного диполя, электрический момент которого р=2 × 10 -14 Кл × м, в точке, лежащей на оси диполя на расстоянии 0.10 м от его центра со стороны положительного заряда.

Решение.Из принципа суперпозиции полей следует, что потенциал любой точки электрического поля равен алгебраической сумме потенциалов, созданных в этой точке каждым зарядом диполя:

Тогда для точки А (см. схему) по формуле потенциала поля точечного заряда на расстоянии R от него

где (p = q × L) – момент диполя; L – плечо диполя.

Для точечного диполя выполняется соотношение L 2 /4) в знаменателе, найдем

мВ.

Пример 3. Плоский конденсатор с расстоянием между пластинами 1 см заряжен до разности потенциалов 1000 В. Определить объемную плотность энергии поля конденсатора. Диэлектрик – стекло.

Решение. Объемная плотность энергии поля конденсатора есть энергия, заключенная в единице объема поля, и может быть определена по формуле

где W – энергия поля конденсатора; V – объем, занимаемый полем, т. е. объем пространства, заключенного между пластинами конденсатора.

Энергия поля конденсатора определяется по формуле

где C – емкость конденсатора; U – разность потенциалов, до которой заряжены пластины конденсатора.

,

Подставив выражение C в W и затем выражения W и V – в ω, получим

Переведем значения всех величин в систему СИ:

d = 1 см = 10 -2 м;

Подставив эти значения в ω, произведем вычисления:

Пример 4. Пространство внутри плоского конденсатора заполнено двумя слоями диэлектриков, расположенными параллельно его обкладкам. Толщина слоев и диэлектрическая проницаемость материалов, из которых сделаны слои, соответственно равны L1, L2, ε1, ε2. Конденсатор заряжен до разности потенциалов U. Определить напряженности Е1, Е2 электрического поля в каждом из диэлектриков, а также напряженность Е поля в зазоре между обкладками и диэлектриками.

Решение.Чтобы найти величинынапряженности Е1, Е2 и Е, выясним связь, существующую между ними и разностью потенциалов U. Известно, что разность потенциалов и напряженность электрического поля связаны соотношением

Читайте также:  Владимир озеров лишь теперь мне понятно стало

(1)

Разбив весь путь интегрирования на две части, соответствующие толщинам двух слоев диэлектриков (толщиной зазора пренебрегаем), и учитывая, что в пределах каждого слоя поле однородно, получим

(2)

Так как электрическое смещение D и в зазоре (ε = 1), и в обоих слоях диэлектриков имеет одно и то же значение, то на основании формулы

= ε ε , (3)

где ε – диэлектрическая проницаемость среды, сокращая на ε, запишем

(4)

Решая совместно уравнения (2) и (4), получим

Пример 5. Элементы ε1, ε2 включены в цепь, как показано на схеме. Определить силы токов, текущих в сопротивлениях R2 и R3, если ε1=10 В и ε2=4 В, а R1 = R4 = 2 Ом и R2 = R3 = 4 Ом. Сопротивлениями элементов пренебречь.

Решение.Силы токов разветвленной цепи можно определить с помощью законов Кирхгофа. Перед составлением уравнений по законам Кирхгофа необходимо, во-первых, выбрать произвольно направления токов, текущих через сопротивления, и, во-вторых, выбрать направление обхода контуров. Выберем направления токов, как показано на схеме, и условимся обходить контуры по часовой стрелке.

Рассматриваемая в задаче схема имеет два узла А и В. Но составлять уравнение по первому закону Кирхгофа следует только для одного узла, так как уравнение, составленное для второго узла, будет следствием первого уравнения.

При составлении уравнений по первому закону Кирхгофа необходимо соблюдать правило знаков: ток, подходящий к узлу, входит в уравнение со знаком «плюс»; ток, отходящий от узла, – со знаком «минус».

По первому закону Кирхгофа для узла В имеем

Недостающие три уравнения составляем по второму закону Кирхгофа для замкнутых контуров. Число независимых уравнений, которые могут быть составлены по закону Кирхгофа, также меньше числа контуров (в нашем случае контуров – шесть, а независимых уравнений – три). Чтобы составить необходимое число независимых уравнений, следует придерживаться правила: для составления уравнений выбирать контуры таким образом, чтобы в каждый новый контур входила хотя бы одна ветвь, не участвовавшая ни в одном из ранее использованных контуров.

При составлении уравнений по второму закону Кирхгофа необходимо соблюдать следующее правило знаков:

а) если ток по направлению совпадает с выбранным направлением обхода контуров, то соответствующее произведение IR входит в уравнение со знаком «плюс», в противном случае произведение IR входит в уравнение со знаком «минус»;

б) если ЭДС повышает потенциал в направлении обхода контура, т. е. если при обходе контура приходится идти от «минуса» к «плюсу» внутри источника, то соответствующая ЭДС входит в уравнение со знаком «плюс», в противном случае – со знаком «минус».

По второму закону Кирхгофа имеем:

Подставив в (1)–(4) числовые значения сопротивлений и ЭДС, получим систему уравнений

Поскольку нужно найти только два тока, то удобно воспользоваться методом определителей (детерминантов). С этой целью перепишем уравнения еще раз в следующем виде:

Искомые значения токов найдем из выражений

,

где Δ – определитель системы уравнений; и – определители, полученные заменой соответствующих столбцов определителя Δ составленными из свободных членов четырех вышеприведенных уравнений.

.

.

А.

Знак «минус» у числового значения силы тока I3 свидетельствует о том, что при произвольном выборе направлений токов, указанных на схеме, направление тока I3 было указано противоположно истинному. На самом деле ток I3 течет от узла В к узлу А.

Пример 6. ЭДС батареи равна 12 В. Наибольшая сила тока, которую может дать батарея, равна 5 А. Какая наибольшая мощность может выделиться на подключенном к батарее резисторе с переменным сопротивлением?

Решение.Мощность тока измеряется работой, совершенной электрическими силами в единицу времени. Поскольку вся работа на внешнем участке цепи идет на нагревание резистора, то в данном случае мощность измеряется количеством теплоты, выделяемым в резисторе в единицу времени. Поэтому на основании закона Джоуля – Ленца, а также закона Ома для замкнутой цепи получим

(1)

где Р – мощность тока; I – сила тока; ε – ЭДС батареи; R, r – сопротивления внешнего и внутреннего участков цепи соответственно.

Отсюда видно, что при постоянных величинах ε, r мощность Р является функцией одной переменной – внешнего сопротивления R. Известно, что эта функция имеет максимум при условии (R = r), в этом можно убедиться, применив общий метод исследования функций на экстремум с помощью производной. Следовательно,

(2)

Таким образом, задача сводится к отысканию сопротивления внутреннего участка цепи (батареи). Если учесть, что согласно закону Ома для замкнутой цепи наибольшая сила тока будет при внешнем сопротивлении R = 0 (ток короткого замыкания), то

(3)

Подставив найденное из (3) значение внутреннего сопротивления в формулу (2), получим

Вт.

Пример 7. При какой постоянной силе тока через поперечное сечение проводника проходит заряд 50 Кл за промежуток времени от 5 до 10 с от момента включения тока? Какой заряд пройдет через поперечное сечение проводника за то же время, если сила тока в проводнике изменяется со временем по закону I = 6 + 3t?

Решение.Если сила тока постоянна, то I =Δq/Δt, где Δt = t2 – t1. Тогда

=10 А.

Если сила тока изменяется со временем, то заряд, прошедший через поперечное сечение проводника за тот же промежуток времени,

Кл.

Пример 8. По медному проводнику с поперечным сечением 1 мм 2 течет ток силой 10 А. Определить среднюю скорость упорядоченного движения (скорость дрейфа) электронов в проводнике.

Решение.Плотность тока

где I – сила тока; S – площадь поперечного сечения проводника; n – концентрация электронов проводимости; е – заряд электронов; – скорость дрейфа электронов.

Поэтому скорость дрейфа равна

Каждый атом меди выделяет один электрон проводимости. Тогда концентрация электронов проводимости будет равна концентрации атомов меди в проводнике. Концентрация атомов меди

где NA – число Авогадро; (ρ = 8,9 × 10 3 кг/м 3 ) – плотность меди;
(μ = 63,5 × 10 –3 кг/моль) – молярная масса. Тогда скорость дрейфа электронов

мм/с.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент – человек, постоянно откладывающий неизбежность. 10581 – | 7334 – или читать все.

78.85.5.224 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *